Simplified Model Predicts Binder Behavior in Sand Mold Printing
Abstract
:1. Introduction
Simplified Model
2. Materials and Methods
2.1. Materials
2.2. Solution and Solver in Simulation
2.2.1. Geometry and Mesh
2.2.2. Setup
2.2.3. Solution Method
2.3. Experiment
3. Results
3.1. Diffusion Comparison in the Simulation and Experiment
3.2. Penetration Comparison in the Simulation and Experiment
4. Discussion
5. Conclusions
- The study proposes a simplified model that converts the binder from droplet-shaped to cylindrical-shaped through unit volume transformation, saving simulation analysis time and reducing setup difficulty;
- Experimental design and CT scans were conducted to predict the penetration depth and diffusion diameter of binders with different volumes deposited onto the powder bed;
- The porosity of the powder bed affects the penetration depth and diffusion diameter, with higher binder volumes leading to increased values;
- The proposed simplified model aligns with the experimental results and exhibits the same trends;
- The model was applied to actual printing using a physical machine, and the results matched the printing outcomes with small errors;
- Using less binder and lower porosity sand will be a future trend for achieving higher precision in binder jetting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upadhyay, M.; Sivarupan, T.; El Mansori, M. 3D printing for rapid sand casting—A review. J. Manuf. Process. 2017, 29, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Hawaldar, N.; Zhang, J. A comparative study of fabrication of sand casting mould using additive manufacturing and conventional process. Int. J. Adv. Manuf. Technol. 2018, 97, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for additive manufacturing. Ann. CIRP 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Sivarupan, T.; Balasubramani, N.; Saxena, P. A review on the progress and challenges of binder jet 3D printing of sand mould for advanced casting. J. Addit. Manuf. 2021, 40, 101889. [Google Scholar] [CrossRef]
- Sachs, E.; Cima, M.; Cornie, J. Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model. Ann. ClRP 1990, 39, 201–204. [Google Scholar] [CrossRef]
- Gilmer, D.; Han, L.; Hong, E.; Siddel, D.; Kisliuk, A.; Cheng, S.; Brunermer, D.; Elliott, A.; Saito, T. An in-situ crosslinking binder for binder jet additive manufacturing. Addit. Manuf. 2020, 35, 101341. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Pei, Z.; Ma, C. Ceramic binder jetting additive manufacturing: A literature review on density. J. Manuf. Sci. Eng. 2020, 142, 040801. [Google Scholar] [CrossRef]
- Barui, S.; Ding, H.; Wang, Z.; Zhao, H.; Marathe, S.; Mirihanage, W.; Basu, B.; Derby, B. Probing ink–powder interactions during 3D binder jet printing using time-resolved X-ray imaging. ACS Appl. Mater. Interfaces 2020, 12, 34254–34264. [Google Scholar] [CrossRef]
- Bala, Y.; Rajendran, D.K.; Rajagopal, V. A review on binder jetting fabrication: Materials, characterizations and challenges. Adv. Addit. Manuf. Process. 2021, 6, 121–140. [Google Scholar]
- Bai, Y.; Wall, C.; Pham, H.; Esker, A.; Williams, C.B. Characterizing binder–powder interaction in binder jetting additive manufacturing via sessile drop goniometry. J. Manuf. Sci. Eng. 2019, 141, 011005. [Google Scholar] [CrossRef]
- Lu, K.; Reynolds, W.T. 3DP process for fine mesh structure printing. Powder Technol. 2008, 187, 11–18. [Google Scholar] [CrossRef]
- Sivarupan, T.; El Mansori, M.; Coniglio, N.; Dargusch, M. Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds. J. Manuf. Process. 2020, 54, 420–437. [Google Scholar] [CrossRef]
- Miyanaji, H.; Momenzadeh, N.; Yang, L. Effect of printing speed on quality of printed parts in binder jetting process. Addit. Manuf. 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Z.; Yang, J.; Xie, Y. Enhancing the capillary force of binder-jetting printing Ti6Al4V and mechanical properties under high temperature sintering by mixing fine powder. Metals 2020, 10, 1354. [Google Scholar] [CrossRef]
- Løvoll, G.; Méheust, Y.; Måløy, K.J.; Aker, E.; Schmittbuhl, J. Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study. Energy 2005, 30, 861–872. [Google Scholar] [CrossRef]
- Nguyen, T.; Shen, W.; Hapgood, K. Drop penetration time in heterogeneous powder beds. Chem. Eng. Sci. 2009, 64, 5210–5221. [Google Scholar] [CrossRef]
- Adin, H.; Ergün, R.K.; Adin, M.Ş. Computer aided numerical damage analysis of the axle shaft. Eur. Mech. Sci. 2022, 6, 201–206. [Google Scholar] [CrossRef]
- Adin, M.Ş.; Adin, H.; Ergün, R.K. Finite Element Analysis of Safety Pin in Snowplow Equipment. Eur. J. Tech. 2022, 12, 89–92. [Google Scholar] [CrossRef]
- Rybdylova, O.; Al Qubeissi, M.; Braun, M.; Crua, C.; Manin, J.; Pickett, L.; de Sercey, G.; Sazhina, E.; Sazhin, S.; Heikal, M. A model for droplet heating and its implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2016, 76, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Tafreshi, H.V. Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Comput. Fluids 2012, 66, 157–166. [Google Scholar] [CrossRef]
- López, A.; Nicholls, W.; Stickland, M.T.; Dempster, W.M. CFD study of Jet Impingement Test erosion using ANSYS Fluent® and OpenFOAM®. Comput. Phys. Commun. 2015, 197, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Guo, S.; Li, M. ANSYS FLUENT-based modeling and hydrodynamic analysis for a spherical underwater robot. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013; pp. 1577–1581. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Qin, T.; Yu, Y.; Xiao, J. Concrete 3D Printing: System Development, Process Planning and Experimental Results. In Proceedings of the DC 2020: Second RILEM International Conference on Concrete and Digital Fabrication, Online, 6–9 July 2020; Volume 28, pp. 998–1010. [Google Scholar] [CrossRef]
- Gootjes, D. Applying Feedback Control to Improve 3D Printing Quality. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2017. Available online: http://resolver.tudelft.nl/uuid:49a31f6e-5b28-48ce-b5f4-4e71fbf4009b (accessed on 7 June 2023).
- Han, Y.; Wei, C.; Dong, J. Droplet formation and settlement of phase-change ink in high resolution electrohydrodynamic (EHD) 3D printing. J. Manuf. Process. 2015, 20, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.; Krishna, S.V.V.; Desai, A.; Sachin, C.; Dixit, A.R. Print fidelity evaluation of PVA hydrogel using computational fluid dynamics for extrusion dependent 3D printing. Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012009. [Google Scholar] [CrossRef]
- López Martínez, J.A.; Fernández, P.; Mehrdel, P.; Casals Terré, J. 3D-printing and computational fluid dynamics “meet” paperbased microfluidics for enhanced flow control in difusive sensors. In Proceedings of the µTAS 2020—The 24th International Conference on Miniaturized Systems for Chemistry and Life Science, Online, 4–9 October 2020; pp. 172–173. Available online: http://hdl.handle.net/2117/330613 (accessed on 7 June 2023).
- Bayat, M.; Dong, W.; Thorborg, J.; To, A.C.; Hattel, J.H. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Addit. Manuf. 2021, 47, 102278. [Google Scholar] [CrossRef]
- Kattinger, J.; Ebinger, T.; Kurz, R.; Bonten, C. Numerical simulation of the complex flow during material extrusion in fused filament fabrication. Addit. Manuf. 2022, 49, 102476. [Google Scholar] [CrossRef]
- Charles, A.; Bayat, M.; Elkaseer, A.; Thijs, L.; Hattel, J.H.; Scholz, S. Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: Phenomenon-oriented multiphysics simulation and experimental validation. Addit. Manuf. 2022, 50, 102551. [Google Scholar] [CrossRef]
- Harris, M.; Mohsin, H.; Potgieter, J.; Arif, K.M.; Anwar, S.; AlFaify, A.; Farooq, M.U. Hybrid deposition additive manufacturing: Novel volume distribution, thermo-mechanical characterization, and image analysis. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 432. [Google Scholar] [CrossRef]
- Sadeghi, R.; Shadloo, M.; Hopp-Hirschler, M.; Hadjadj, A.; Nieken, U. Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput. Math. Appl. 2018, 75, 2445–2465. [Google Scholar] [CrossRef]
- Nazari, M.; Salehabadi, H.; Kayhani, M.H.; Daghighi, Y. Predicting the penetration and navigating the motion of a liquid drop in a layered porous medium: Viscous Fingering vs. capillary fingering. Braz. J. Chem. Eng. 2018, 35, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Huang, Y.; Wu, S.; Yang, Y. Binder jetting additive manufacturing: Three-dimensional simulation of micro-meter droplet impact and penetration into powder bed. J. Manuf. Process. 2022, 74, 365–373. [Google Scholar] [CrossRef]
- Gao, X.; Yang, W.; Xian, H.; Tu, X.; Wang, Y. Numerical simulation of multi-layer penetration process of binder droplet in 3DP technique. Comput. Model. Eng. Sci. 2020, 124, 227–241. [Google Scholar] [CrossRef]
- Miyanaji, H.; Orth, M.; Akbar, J.M.; Yang, L. Process development for green part printing using binder jetting additive manufacturing. Front. Mech. Eng. 2018, 13, 504–512. [Google Scholar] [CrossRef]
- Teunou, E.; Fitzpatrick, J.J.; Synnott, E.C. Characterisation of food powder flowability. J. Food Eng. 1999, 39, 31–37. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Pizette, P.; Martin, C.L. Effect of particle size in aggregated and agglomerated ceramic powders. Acta Mater. 2010, 58, 802–812. [Google Scholar] [CrossRef]
- Cheng, Y.-L.; Tseng, T.-W. Study on driving waveform design process for multi-nozzle piezoelectric printhead in material-jetting 3D printing. Rapid Prototype J. 2021, 27, 1172–1180. [Google Scholar] [CrossRef]
- Karapatis, N.P.; Egger, G.; Gygax, P.E.; Glardon, R. Optimization of Powder Layer Density in Selective Laser Sintering; Mechanical Engineering Dept, University Texas Austin: Austin, TX, USA, 1999; pp. 255–263. [Google Scholar]
- Marmur, A. Penetration of a small drop into a capillary. J. Colloid Interface Sci. 1988, 122, 209–219. [Google Scholar] [CrossRef]
- Marmur, A. Drop penetration into a thin porous medium. J. Colloid Interface Sci. 1987, 123, 161–169. [Google Scholar] [CrossRef]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-L.; Li, Y.-T. Greyscale printing and characterization of the binder migration pattern during 3D sand mold printing. Addit. Manuf. 2022, 56, 102929. [Google Scholar] [CrossRef]
Binder | ||
---|---|---|
Item | Unit | Measurement |
density | 2.34 g/cm3 | |
viscosity | 14.55 cp | US Brookfield viscometer DV2T |
surface tension | 40.23 mN/m | Model 100SB |
Sand Particles | ||||||||
---|---|---|---|---|---|---|---|---|
Item | Density (g/cm3) | Particle Size (µm) | Porosity (%) | D10 | D50 | D90 | Contact Angle (°) | |
A. SiO2 | A-1 | 2.612 | 9–13 | 16.6 | 1.870 | 8.841 | 17.28 | 129.98 |
A-2 | 2.594 | 70–200 | 38.2 | 122.8 | 201.9 | 296.0 | 100.71 | |
A-3 | 2.650 | 198–326 | 40.7 | 98.88 | 185.1 | 266.4 | 79.66 | |
B. ZrO2 | 5.890 | 0.28–43.6 | 36.3 | 3.825 | 93.89 | 148.6 | 94.99 | |
C. Al2O3 | 3.970 | 62.7–149.9 | 7.6 | 0.257 | 7.386 | 38.52 | 108.48 |
Item | Variables | |||
---|---|---|---|---|
Geometry | size | |||
porosity | SiO2 | A-1 | 16.6% | |
A-2 | 38.2% | |||
A-3 | 40.7% | |||
Al2O3 | 7.6% | |||
ZrO2 | 36.3% | |||
Mesh | Smoothing | medium | ||
Max size | 4.096−4 (m) | |||
Min size | 5.0−8 (m) | |||
Setup | Method | VOF | ||
Inlet velocity | 1 (m/s) | |||
Solution Method | Scheme | PISO | ||
Gradient | Green-Gauss node-based | |||
Pressure | PRESTO! | |||
Solver | Second Order Upwind | |||
Time step size | Time step size | 1.0−6 (s) | ||
Number of time steps | 2000 |
Binder volume (µL) | 0.1 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
Boundary condition transition time Δt (10−4 s) | 1.48 | 2.52 | 3.18 | 3.64 | 4.01 | 4.32 |
Inlet area radius r (mm) | 0.464 | 0.794 | 1.000 | 1.145 | 1.260 | 1.357 |
A-1 | A-2 | A-3 | Al2O3 | ZrO2 | |
---|---|---|---|---|---|
Dry | 129.98 | 100.71 | 79.66 | 108.48 | 94.99 |
Wet | 57.08 | 44.8 | 51.84 | 70.73 | 89.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-T.; Cheng, Y.-L.; Tang, K.-T. Simplified Model Predicts Binder Behavior in Sand Mold Printing. Appl. Sci. 2023, 13, 6985. https://doi.org/10.3390/app13126985
Li Y-T, Cheng Y-L, Tang K-T. Simplified Model Predicts Binder Behavior in Sand Mold Printing. Applied Sciences. 2023; 13(12):6985. https://doi.org/10.3390/app13126985
Chicago/Turabian StyleLi, Yen-Ting, Yih-Lin Cheng, and Kea-Tiong Tang. 2023. "Simplified Model Predicts Binder Behavior in Sand Mold Printing" Applied Sciences 13, no. 12: 6985. https://doi.org/10.3390/app13126985
APA StyleLi, Y.-T., Cheng, Y.-L., & Tang, K.-T. (2023). Simplified Model Predicts Binder Behavior in Sand Mold Printing. Applied Sciences, 13(12), 6985. https://doi.org/10.3390/app13126985