Self−Mode−Locked 2−μm GaSb−Based Optically Pumped Semiconductor Disk Laser
Abstract
:1. Introduction
2. Experiment Design and Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuznetsov, M.; Hakimi, F.; Sprague, R.; Mooradian, A. Design and characteristics of high−power(>0.5W CW) diode pumped vertical external cavity surface emitting semiconductor lasers with circular TEM00 beams. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 561–573. [Google Scholar] [CrossRef]
- Guina, M.; Rantamaki, A.; Harkonen, A. Optically pumped VECSELs: Review of technology and progress. J. Phys. D Appl. Phys. 2017, 50, 383001. [Google Scholar] [CrossRef]
- Tilma, B.W.; Mangold, M.; Zaugg, C.A.; Link, S.M.; Waldburger, D.; Klenner, A.; Mayer, A.S.; Gini, E.; Golling, M.; Keller, U. Recent advances in ultrafast semiconductor disk lasers. Light Sci. Appl. 2015, 4, e310. [Google Scholar] [CrossRef] [Green Version]
- Calvez, S.; Hastie, J.E.; Guina, M.; Okhotnikov, O.G.; Dawson, M.D. Semiconductor disk lasers for the generation of visible and ultraviolet radiation. Laser Photonics Rev. 2009, 3, 407–434. [Google Scholar] [CrossRef]
- Schulz, N.; Hopkins, J.M.; Rattunde, M.; Burns, D.; Wagner, J. High−brightness long−wavelength semiconductor disk lasers. Laser Photonics Rev. 2008, 2, 160–181. [Google Scholar] [CrossRef]
- Holl, P.; Rattunde, M.; Adler, S.; Bächle, A.; Diwo−Emmer, E.; Aidam, R.; Wagner, J. GaSb−based 2.0 μm SDL with 17 W output power at 20 °C. Electron. Lett. 2016, 52, 1794–1795. [Google Scholar] [CrossRef]
- Shu, S.; Hou, G.; Feng, J.; Wang, L.; Tian, S.; Tong, C.; Wang, L. Progress of optically pumped GaSb based semiconductor disk laser. Opto−Electron. Adv. 2018, 1, 170003. [Google Scholar] [CrossRef]
- Holl, P.; Rattunde, M.; Adler, S.; Kaspar, S.; Bronner, W.; Bachle, A.; Aidam, R.; Wagner, J. Recent Advances in Power Scaling of GaSb−Based Semiconductor Disk Lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 324–335. [Google Scholar] [CrossRef]
- Gaafar, M.A.; Rahimi−Iman, A.; Fedorova, K.A.; Stolz, W.; Rafailov, E.U.; Koch, M. Mode−locked semiconductor disk lasers. Adv. Opt. Photonics 2016, 8, 370–400. [Google Scholar] [CrossRef]
- Price, J.H.V.; Monro, T.M.; Ebendorff−Heidepriem, H.; Poletti, F.; Horak, P.; Finazzi, V.; Leong, J.Y.Y.; Petropoulos, P.; Flanagan, J.C.; Brambilla, G.; et al. Mid−IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 738–749. [Google Scholar] [CrossRef] [Green Version]
- Targ, R.; Steakley, B.C.; Hawley, J.G.; Ames, L.L.; Forney, P.; Swanson, D.; Stone, R.; Otto, R.G.; Zarifis, V.; Brockman, P.; et al. Coherent lidar airborne wind sensor II: Flight−test results at 2 and 10 μm. Appl. Opt. 1996, 35, 7117–7127. [Google Scholar] [CrossRef]
- Ebrahim−Zadeh, M.; Helmy, A.S.; Leo, G.; Schunemann, P.G. Mid−infrared coherent sources and applications: Introduction. J. Opt. Soc. Am. B 2021, 38, MIC1. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Ma, J.; Qin, Z.; Xie, G.; Qian, L.; Tang, D. Review of mid−infrared mode−locked laser sources in the 2.0 μm–3.5 μm spectral region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Heinecke, D.; Paajaste, J.; Kolbl, C.; Dekorsy, T.; Suomalainen, S.; Guina, M. Mode−locking of 2 µm Tm,Ho:YAG laser with GaInAs and GaSb−based SESAMs. Opt. Express 2013, 21, 4311–4318. [Google Scholar] [CrossRef] [Green Version]
- Gluth, A.; Wang, Y.; Petrov, V.; Paajaste, J.; Suomalainen, S.; Harkonen, A.; Guina, M.; Steinmeyer, G.; Mateos, X.; Veronesi, S.; et al. GaSb−based SESAM mode−locked Tm:YAG ceramic laser at 2 µm. Opt. Express 2015, 23, 1361–1369. [Google Scholar] [CrossRef]
- Gaponenko, M.; Wittwer, V.J.; Harkonen, A.; Suomalainen, S.; Kuleshov, N.; Guina, M.; Sudmeyer, T. Diode−pumped Tm:KY(WO(4))(2) laser passively modelocked with a GaSb−SESAM. Opt. Express 2017, 25, 25760–25766. [Google Scholar] [CrossRef] [Green Version]
- Tomilov, S.; Wang, Y.; Hoffmann, M.; Heidrich, J.; Golling, M.; Keller, U.; Saraceno, C.J. 50−W average power Ho:YAG SESAM−modelocked thin−disk oscillator at 2.1 µm. Opt. Express 2022, 30, 27662–27673. [Google Scholar] [CrossRef]
- Harkonen, A.; Paajaste, J.; Suomalainen, S.; Alanko, J.P.; Grebing, C.; Koskinen, R.; Steinmeyer, G.; Guina, M. Picosecond passively mode−locked GaSb−based semiconductor disk laser operating at 2 um. Opt. Lett. 2010, 35, 4090–4092. [Google Scholar] [CrossRef]
- Härkönen, A.; Grebing, C.; Paajaste, J.; Koskinen, R.; Alanko, J.P.; Suomalainen, S.; Steinmeyer, G.; Guina, M. Modelocked GaSb disk laser producing 384 fs pulses at 2 µm wavelength. Electron. Lett. 2011, 47, 454–456. [Google Scholar] [CrossRef]
- Heidrich, J.; Gaulke, M.; Golling, M.; Alaydin, B.O.; Barh, A.; Keller, U. 324−fs Pulses From a SESAM Modelocked Backside−Cooled 2−μm VECSEL. IEEE Photonics Technol. Lett. 2022, 34, 337–340. [Google Scholar] [CrossRef]
- Kornaszewski, L.; Maker, G.; Malcolm, G.P.A.; Butkus, M.; Rafailov, E.U.; Hamilton, C.J. SESAM−free mode−locked semiconductor disk laser. Laser Photonics Rev. 2012, 6, L20–L23. [Google Scholar] [CrossRef]
- Gaafar, M.; Richter, P.; Keskin, H.; Möller, C.; Wichmann, M.; Stolz, W.; Rahimi−Iman, A.; Koch, M. Self−mode−locking semiconductor disk laser. Opt. Express 2014, 22, 28390–28399. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, A.R.; Wang, Y.; Ghasemkhani, M.; Seletskiy, D.V.; Cederberg, J.G.; Sheik−Bahae, M. Exploring ultrafast negative Kerr effect for mode−locking vertical external−cavity surface−emitting lasers. Opt. Express 2013, 21, 28801–28808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Zhu, R.; Wang, T.; Wu, Y.; Tong, C.; Wang, L.; Song, Y. Dynamics Simulation and Experimental Investigation of Q−Switching in a Self−Mode−Locked Semiconductor Disk Laser. IEEE Photonics J. 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, R.; Tong, C.; Liu, Y.; Zhang, P. Dynamics Simulation of Self−Mode−Locking in a Semiconductor Disk Laser Using Delay Differential Equations. Photonics 2022, 9, 859. [Google Scholar] [CrossRef]
- Merghem, K.; Akrout, A.; Martinez, A.; Moreau, G.; Tourrenc, J.P.; Lelarge, F.; Van Dijk, F.; Duan, G.H.; Aubin, G.; Ramdane, A. Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser. Opt. Express 2008, 16, 10675–10683. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wei, W.Q.; Feng, Q.; Wang, T.; Zhang, J.J. InAs/GaAs quantum dot single−section mode−locked lasers on Si (001) with optical self−injection feedback. Opt. Express 2021, 29, 674–683. [Google Scholar] [CrossRef]
- Khan, M.Z.M.; Ng, T.K.; Ooi, B.S. Self−assembled InAs/InP quantum dots and quantum dashes: Material structures and devices. Prog. Quant. Electron. 2014, 38, 237–313. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Chichkov, N.B.; Avrutin, E.A.; Gorodetsky, A.; Rafailov, E.U. Edge emitting mode−locked quantum dot lasers. Prog. Quant. Electron. 2023, 87, 100451. [Google Scholar] [CrossRef]
- Keller, U.; Tropper, A.C. Passively modelocked surface−emitting semiconductor lasers. Phys. Rep. 2006, 429, 67–120. [Google Scholar] [CrossRef]
- Keller, U.; ’tHooft, G.W.; Knox, W.H.; Cunningham, J.E. Femtosecond pulses from a continuously self−starting passively mode−locked Ti:sapphire laser. Opt. Lett. 1991, 16, 1022–1024. [Google Scholar] [CrossRef] [Green Version]
- Salin, F.; Squier, J.; Piché, M. Mode locking of Ti:Al2O3 lasers and self−focusing: A Gaussian approximation. Opt. Lett. 1991, 16, 1674–1676. [Google Scholar] [CrossRef]
- Herrmann, J. Theory of Kerr−lens mode locking: Role of self−focusing and radially varying gain. J. Opt. Soc. Am. B 1994, 11, 498–512. [Google Scholar] [CrossRef]
- Yefet, S.; Pe’er, A. A Review of Cavity Design for Kerr Lens Mode−Locked Solid−State Lasers. Appl. Sci. 2013, 3, 694–724. [Google Scholar] [CrossRef] [Green Version]
- Keller, U.; Weingarten, K.J.; Kartner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; Honninger, C.; Matuschek, N.; Au, J.A.d. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid−state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Pankratova, M.; Vasylchenkova, A.; Derevyanko, S.A.; Chichkov, N.B.; Prilepsky, J.E. Signal−Noise Interaction in Optical−Fiber Communication Systems Employing Nonlinear Frequency−Division Multiplexing. Phys. Rev. Appl. 2020, 13, 054021. [Google Scholar] [CrossRef]
- Calò, C.; Vujicic, V.; Watts, R.; Browning, C.; Merghem, K.; Panapakkam, V.; Lelarge, F.; Martinez, A.; Benkelfat, B.E.; Ramdane, A.; et al. Single−section quantum well mode−locked laser for 400 Gb/s SSB−OFDM transmission. Opt. Express 2015, 23, 26442–26449. [Google Scholar] [CrossRef]
- Khan, M.Z.M. Towards InAs/InP Quantum−Dash Laser−Based Ultra−High Capacity Heterogeneous Optical Networks: A Review. IEEE Access 2022, 10, 9960–9988. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Gaeta, A.L.; Lipson, M.; Gorodetsky, M.L. Dissipative Kerr solitons in optical microresonators. Science 2018, 361, eaan8083. [Google Scholar] [CrossRef] [Green Version]
- Columbo, L.; Piccardo, M.; Prati, F.; Lugiato, L.A.; Brambilla, M.; Gatti, A.; Silvestri, C.; Gioannini, M.; Opačak, N.; Schwarz, B.; et al. Unifying Frequency Combs in Active and Passive Cavities: Temporal Solitons in Externally Driven Ring Lasers. Phys. Rev. Lett. 2021, 126, 173903. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Chen, J.; Huang, J.; Wang, Z.; Zhang, J.; Wang, T. Advances of semiconductor mode−locked laser for optical frequency comb generation. Natl. Sci. Open 2022, 1, 20220026. [Google Scholar] [CrossRef]
- Chen, J.J.; Wei, W.Q.; Qin, J.L.; Yang, B.; Huang, J.Z.; Wang, Z.H.; Wang, T.; Yu, C.Y.; Zhang, J.J. Multi−wavelength injection locked semiconductor comb laser. Photon. Res. 2022, 10, 1840–1847. [Google Scholar] [CrossRef]
- Rutkauskas, M.; Srivastava, A.; Reid, D.T. Supercontinuum generation in orientation−patterned gallium phosphide. Optica 2020, 7, 172–175. [Google Scholar] [CrossRef]
- Kolesik, M.; Katona, G.; Moloney, J.V.; Wright, E.M. Theory and simulation of supercontinuum generation in transparent bulk media. Appl. Phys. B 2003, 77, 185–195. [Google Scholar] [CrossRef]
- Silva, F.; Austin, D.R.; Thai, A.; Baudisch, M.; Hemmer, M.; Faccio, D.; Couairon, A.; Biegert, J. Multi−octave supercontinuum generation from mid−infrared filamentation in a bulk crystal. Nat. Commun. 2012, 3, 807. [Google Scholar] [CrossRef] [Green Version]
- Quarterman, A.H.; Tyrk, M.A.; Wilcox, K.G. Z−scan measurements of the nonlinear refractive index of a pumped semiconductor disk laser gain medium. Appl. Phys. Lett. 2015, 106, 011105. [Google Scholar] [CrossRef]
- Shaw, E.A.; Quarterman, A.H.; Turnbull, A.P.; Sverre, T.C.; Head, C.R.; Tropper, A.C.; Wilcox, K.G. Nonlinear Lensing in an Unpumped Antiresonant Semiconductor Disk Laser Gain Structure. IEEE Photonics Technol. Lett. 2016, 28, 1395–1398. [Google Scholar] [CrossRef] [Green Version]
- Quarterman, A.H.; Mirkhanov, S.; Smyth, C.J.C.; Wilcox, K.G. Measurements of nonlinear lensing in a semiconductor disk laser gain sample under optical pumping and using a resonant femtosecond probe laser. Appl. Phys. Lett. 2016, 109, 121113. [Google Scholar] [CrossRef] [Green Version]
- Haus, H.A. Mode−locking of lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1173–1185. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Turaev, D.; Kozyreff, G. Delay differential equations for mode−locked semiconductor lasers. Opt. Lett. 2004, 29, 1221–1223. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Turaev, D. Model for passive mode locking in semiconductor lasers. Phys. Rev. A 2005, 72, 033808. [Google Scholar] [CrossRef] [Green Version]
- Schelte, C.; Javaloyes, J.; Gurevich, S.V. Dynamics of temporally localized states in passively mode−locked semiconductor lasers. Phys. Rev. A 2018, 97, 053820. [Google Scholar] [CrossRef] [Green Version]
- Liau, Z.L. Semiconductor wafer bonding via liquid capillarity. Appl. Phys. Lett. 2000, 77, 651–653. [Google Scholar] [CrossRef]
- Tsou, C.H.; Liang, H.C.; Wen, C.P.; Su, K.W.; Huang, K.F.; Chen, Y.F. Exploring the influence of high order transverse modes on the temporal dynamics in an optically pumped mode−locked semiconductor disk laser. Opt. Express 2015, 23, 16339–16347. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.C.; Tsou, C.H.; Lee, Y.C.; Huang, K.F.; Chen, Y.F. Observation of self−mode−locking assisted by high−order transverse modes in optically pumped semiconductor lasers. Laser Phys. Lett. 2014, 11, 105803. [Google Scholar] [CrossRef]
- Gaafar, M.; Möller, C.; Wichmann, M.; Heinen, B.; Kunert, B.; Rahimi Iman, A.; Stolz, W.; Koch, M. Harmonic self−mode−locking of optically pumped semiconductor disc laser. Electron. Lett. 2014, 50, 542–543. [Google Scholar] [CrossRef]
- Koskinen, R.; Suomalainen, S.; Paajaste, J.; Kivistö, S.; Guina, M.; Okhotnikov, O.; Pessa, M. Highly nonlinear GaSb−based saturable absorber mirrors. Proc. SPIE 2009, 7354, 73540G. [Google Scholar] [CrossRef]
- Shang, J.; Feng, J.; Yang, C.; Xie, S.; Zhang, Y.; Tong, C.; Zhang, Y.; Niu, Z. High quality 2−μm GaSb−based optically pumped semiconductor disk laser grown by molecular beam epitaxy*. Chin. Phys. B 2019, 28, 034202. [Google Scholar] [CrossRef]
Laser Gain | τp | f0 | λ0 | Pout | References |
---|---|---|---|---|---|
InGaSb Multi−QWs | 1.1 ps | 881.2 MHz | 1950 nm | 25 mW | [19] |
384 fs | 890.4 MHz | 1960 nm | 25 mW | [20] | |
324 fs | 3.03 GHz | 2061 nm | 65 mW | [21] | |
4.52 ps | 3.03 GHz | 2072.8 nm | 260 mW |
γ | κ | γg−1 | γq−1 | s | q0 | g0 |
---|---|---|---|---|---|---|
200 | 0.9742 | 10 ns | 10 ps | 25 | 1.0 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Meng, B.; Shang, J.; Zhang, X.; Tong, C.; Zhang, Y.; Niu, Z.; Wang, L. Self−Mode−Locked 2−μm GaSb−Based Optically Pumped Semiconductor Disk Laser. Appl. Sci. 2023, 13, 6873. https://doi.org/10.3390/app13126873
Feng J, Meng B, Shang J, Zhang X, Tong C, Zhang Y, Niu Z, Wang L. Self−Mode−Locked 2−μm GaSb−Based Optically Pumped Semiconductor Disk Laser. Applied Sciences. 2023; 13(12):6873. https://doi.org/10.3390/app13126873
Chicago/Turabian StyleFeng, Jian, Bo Meng, Jinming Shang, Xin Zhang, Cunzhu Tong, Yu Zhang, Zhichuan Niu, and Lijun Wang. 2023. "Self−Mode−Locked 2−μm GaSb−Based Optically Pumped Semiconductor Disk Laser" Applied Sciences 13, no. 12: 6873. https://doi.org/10.3390/app13126873
APA StyleFeng, J., Meng, B., Shang, J., Zhang, X., Tong, C., Zhang, Y., Niu, Z., & Wang, L. (2023). Self−Mode−Locked 2−μm GaSb−Based Optically Pumped Semiconductor Disk Laser. Applied Sciences, 13(12), 6873. https://doi.org/10.3390/app13126873