Analyzing Spatial-Temporal Change of Vegetation Ecological Quality and Its Influencing Factors in Anhui Province, Eastern China Using Multiscale Geographically Weighted Regression
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
3. Research Methodology
3.1. Data Processing and Analysis
3.2. Ecological Quality Index of Terrestrial Vegetation
3.3. Trend Analysis
3.4. Partial Correlation Analysis
3.5. Bivariate Spatial Autocorrelation Analysis
3.6. Multiscale Geographic Weighted Regression
4. Results
4.1. Spatial and Temporal Variation of EQI
4.2. Impact of Temperature and Precipitation on EQI
4.3. Spatial Correlation Analysis of Human Activities and EQI
4.4. Spatial Heterogeneity Analysis of EQI Impact Factors
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, S.; Cui, X.J.; Jiang, Y. QX/T 494-2019 Interpretation of QX/T 494-2019, Grade of monitoring and evaluating for terrestrial vegetation meteorology and ecological quality. Std. Sci. 2022, 7, 91–97+110. (In Chinese) [Google Scholar]
- DeFries, R. Terrestrial Vegetation in the Coupled Human-Earth System: Contributions of Remote Sensing. Annu. Rev. Environ. Resour. 2008, 33, 369–390. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Wei, X.; Wang, S.; Wang, Y. Spatial and temporal change of fractional vegetation cover in North-western China from 2000 to 2010. Geol. J. 2018, 53, 427–434. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Ren, Y.; Wu, X.; Guo, B.; Tang, X.; Shi, W.; Ma, M.; Han, X.; Zhao, L. Divergent vegetation responses to extreme spring and summer droughts in Southwestern China. Agric. For. Meteorol. 2019, 279, 107703. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.; Yang, L.; Zhou, T. Declining Effect of Precipitation on the Normalized Difference Vegetation Index of Grasslands in the Inner Mongolian Plateau, 1982–2010. Appl. Sci. 2021, 11, 8766. [Google Scholar] [CrossRef]
- Fu, D.J.; Xiao, H.; Su, F.Z.; Zhou, C.H.; Dong, J.W.; Zeng, Y.L.; Yan, K.; Li, S.W.; Wu, J.; Wu, W.Z.; et al. Remote sensing cloud computing platform development and Earth science application. Nat. Remote Sens. Bull. 2021, 25, 220–230. (In Chinese) [Google Scholar]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Moore, R.; Hansen, M. Google Earth Engine: A New Cloud-Computing Platform for Global-Scale Earth Observation Data and Analysis. In Proceedings of the American Geophysical Union Fall Meeting 2011, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China. Int. J. Clim. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.; Yin, S. Multi-perspective analysis of vegetation cover changes and driving factors of long time series based on climate and terrain data in Hanjiang River Basin, China. Arab. J. Geosci. 2018, 11, 509. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, Y.; Zhang, L. Contributions of natural and human factors to increases in vegetation productivity in China. Ecosphere 2015, 6, 233. [Google Scholar] [CrossRef]
- Luo, L.; Ma, W.; Zhuang, Y.; Zhang, Y.; Yi, S.; Xu, J.; Long, Y.; Ma, D.; Zhang, Z. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic. 2018, 93, 24–35. [Google Scholar] [CrossRef]
- Cheng, D.; Qi, G.; Song, J.; Zhang, Y.; Bai, H.; Gao, X. Quantitative Assessment of the Contributions of Climate Change and Human Activities to Vegetation Variation in the Qinling Mountains. Front. Earth Sci. 2021, 9, 782287. [Google Scholar] [CrossRef]
- Luo, H.X.; Dai, S.P.; Li, M.F.; Li, Y.P.; Zheng, Q.; Hu, Y.Y. Relative roles of climate changes and human activities in vegetation variables in Hainan Island. Remote Sens. Nat. Resour. 2020, 32, 154–161. (In Chinese) [Google Scholar]
- Zhang, L.Y.; Li, X.; Feng, J.H.; Rao, Y.G.; He, T.Y.; Chen, Y. Spatial-temporal Changes of NDVI in Yellow River Basin and Its Dual Response to Climate Change and Human Activities During 2000–2018. Bull. Soil Water Conserv. 2021, 41, 276–286. (In Chinese) [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild: The Human Footprint Is a Global Map of Human Influence on the Land Surface, Which Suggests That Human Beings Are Stewards of Nature, Whether We like It or Not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conser-vation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 2016, 3, 160067. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhou, L.; Jiang, G.; Meadows, M.E.; Zhang, J.; Pu, L.; Wu, C.; Xie, X. Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric PM2.5 Concentrations in China from 2000–2015. Remote Sens. 2021, 13, 2152. [Google Scholar] [CrossRef]
- Yue, H.; Duan, L.; Lu, M.; Huang, H.; Zhang, X.; Liu, H. Modeling the Determinants of PM2.5 in China Considering the Localized Spatiotemporal Effects: A Multiscale Geographically Weighted Regression Method. Atmosphere 2022, 13, 627. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Tan, X.; Jia, T.; Senousi, A.M.; Huang, J.; Yin, L.; Zhang, F. Nighttime Vitality and Its Relationship to Urban Diversity: An Exploratory Analysis in Shenzhen, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 309–322. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y.; Zhang, F. Spatiotemporal Variation in Ground Level Ozone and Its Driving Factors: A Comparative Study of Coastal and Inland Cities in Eastern China. Int. J. Environ. Res. Public Health 2022, 19, 9687. [Google Scholar] [CrossRef] [PubMed]
- Grade of Monitoring and Evaluating for Terrestrial Vegetation Meteorology and Ecological Quality. Available online: https://www.cma.gov.cn/zfxxgk/gknr/flfgbz/bz/202209/t20220921_5099232.html (accessed on 22 December 2022).
- De Jager, N.R.; Fox, T.J. Curve Fit: A pixel-level raster regression tool for mapping spatial patterns. Methods Ecol. Evol. 2013, 4, 789–792. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, W.-T.; Dou, S.-Q.; Guo, Z.-D.; Li, X.-Y.; Zheng, Z.-W.; Jing, J.-L. Responding Mechanism of Vegetation Cover to Climate Change and Human Activities in Southwest China from 2000 to 2020. HuanJing KeXue 2022, 43, 3230–3240. [Google Scholar] [CrossRef]
- Shi, S.; Wang, P.; Zhang, Y.; Yu, J. Cumulative and time-lag effects of the main climate factors on natural vegetation across Siberia. Ecol. Indic. 2021, 133, 108446. [Google Scholar] [CrossRef]
- Yao, S.W.; Zeng, J.; Li, W.J. Spatial correlation characteristics of urbanization and land ecosystem service value in Wuhan Urban Agglomeration. Trans. Chin. Soc. Agric. Eng. 2015, 31, 249–256. (In Chinese) [Google Scholar]
- Anselin, L. The Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice: A Guide to Geoda, Geodaspace and PySAL; GeoDa Press LLC: Chicago, IL, USA, 2014. [Google Scholar]
- Zhou, T.; Chen, W.X.; Li, J.F.; Liang, J.L. Spatial relationship between human activities and habitat quality in Shennongjia Forest Region from 1995 to 2015. Acta Ecol. Sin. 2021, 41, 6134–6145. (In Chinese) [Google Scholar]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. Mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Shen, T.Y.; Yu, H.C.; Zhou, L.; Gu, H.Y.; He, H.H. On Hedonic Price of Second-Hand Houses in Beijing Based on Multi-Scale Geographically Weighted Regression: Scale Law of Spatial Heterogeneity. Econ. Geogr. 2020, 40, 75–83. (In Chinese) [Google Scholar] [CrossRef]
- Gu, Z.N.; Zhang, Z.; Hu, K.Q.; Lu, Y.J. Analysis on the Normalized Difference Vegetation Index Change and Influence Factors in Anhui Province Based on Structural Equation Model. Sci. Technol. Eng. 2022, 22, 12259–12267. (In Chinese) [Google Scholar]
- Wang, Y.; Liao, J.; Ye, Y.; Fan, J. Long-term human expansion and the environmental impacts on the coastal zone of China. Front. Mar. Sci. 2022, 9, 5279. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Zhang, Y.; Lü, D.; Wang, C.; Lü, Y.; Wu, X. Spatiotemporal Patterns and Driving Factors of Ecological Vulnerability on the Qinghai-Tibet Plateau Based on the Google Earth Engine. Remote Sens. 2022, 14, 5279. [Google Scholar] [CrossRef]
- Meng, Z.; Dong, J.; Ellis, E.C.; Metternicht, G.; Qin, Y.; Song, X.-P.; Löfqvist, S.; Garrett, R.D.; Jia, X.; Xiao, X. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef]
- Zhang, K.; Wen, Z. Review and challenges of policies of environmental protection and sustainable development in China. J. Environ. Manag. 2008, 88, 1249–1261. [Google Scholar] [CrossRef]
- Li, L.; Fan, Z.; Xiong, K.; Shen, H.; Guo, Q.; Dan, W.; Li, R. Current situation and prospects of the studies of ecological industries and ecological products in eco-fragile areas. Environ. Res. 2021, 201, 111613. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhao, S.; Gu, J. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001–2013. J. Geogr. Sci. 2017, 27, 143–160. [Google Scholar] [CrossRef]
- Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434. [Google Scholar] [CrossRef]
- Li, M.; Yan, Q.; Li, G.; Yi, M.; Li, J. Spatio-Temporal Changes of Vegetation Cover and Its Influencing Factors in Northeast China from 2000 to 2021. Remote Sens. 2022, 14, 5720. [Google Scholar] [CrossRef]
- Grömping, U. Estimators of Relative Importance in Linear Regression Based on Variance Decomposition. Am. Stat. 2007, 61, 139–147. [Google Scholar] [CrossRef]
- Shi, P.; Chen, Y.; Zhang, G.; Tang, H.; Chen, Z.; Yu, D.; Yang, J.; Ye, T.; Wang, J.; Liang, S.; et al. Factors contributing to spatial–temporal variations of observed oxygen concentration over the Qinghai-Tibetan Plateau. Sci. Rep. 2021, 11, 17338. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Time Resolution | Website/GEE Dataset |
---|---|---|---|
NDVI | 500 m | 1 year | MODIS/061/MOD13A |
NPP | 500 m | 8 day | MODIS/006/MOD17A3HG |
precipitation | 5566 m | 1 day | UCSB-CHG/CHIRPS/DAILY |
Average temperature | 11,132 m | 1 month | ECMWF/ERA5_LAND/MONTHLY |
DEM | 30 m | N/A | projects/sat-io/open-datasets/ASTER/GDEM |
Human Footprint | 1000 m | 1 year | https://doi.org/10.6084/m9.figshare.16571064 accessed on 15 December 2022. |
Area | Extremely Significant Reduction | Significant Reduction | Not Significant | Significant Increase | Extremely Significant Increase |
---|---|---|---|---|---|
Huaibei Plain | 1.78% | 0.95% | 63.94% | 14.39% | 18.95% |
Jianghuai hills | 1.21% | 0.51% | 23.88% | 13.54% | 60.86% |
Riverside Plain | 5.75% | 2.35% | 41.50% | 11.80% | 38.60% |
Dabie Mountains | 0.73% | 0.38% | 40.78% | 17.45% | 40.66% |
Southern Anhui Mountains | 1.85% | 1.02% | 65.96% | 8.50% | 22.67% |
Year | MGWR Parameters | Variable Bandwidth | |||||
---|---|---|---|---|---|---|---|
AICc | Adj R2 | H | T | P | E | S | |
2000 | 4215 | 0.826 | 217 | 3573 | 3573 | 217 | 671 |
2005 | 5668 | 0.738 | 250 | 314 | 3573 | 43 | 1101 |
2010 | 6928 | 0.633 | 52 | 3573 | 3573 | 95 | 706 |
2015 | 6376 | 0.678 | 121 | 2388 | 813 | 51 | 1664 |
2018 | 5904 | 0.729 | 51 | 3573 | 3573 | 1120 | 325 |
Year | Regression Coefficient Mean ± Standard Deviation | ||||
---|---|---|---|---|---|
H | T | P | E | S | |
2000 | −0.135 ± 0.594 | −0.083 ± 0.003 | 0.066 ± 0.001 | 0.323 ± 0.307 | 0.108 ± 0.104 |
2005 | −0.195 ± 0.128 | 0.156 ± 0.393 | −0.050 ± 0.002 | 0.34 ± 0.892 | 0.130 ± 0.074 |
2010 | −0.294 ± 0.224 | −0.223 ± 0.002 | −0.048 ± 0.006 | 0.429 ± 0.611 | 0.091 ± 0.132 |
2015 | −0.327 ± 0.164 | −0.136 ± 0.011 | 0.452 ± 0.401 | 0.394 ± 0.593 | 0.135 ± 0.035 |
2018 | −0.237 ± 0.191 | −0.108 ± 0.002 | 0.083 ± 0.007 | 0.175 ± 0.137 | 0.388 ± 0.251 |
Year | H | T | P | E | S |
---|---|---|---|---|---|
2000 | 15.09% | 20.47% | 13.54% | 24.63% | 26.26% |
2005 | 17.96% | 7.89% | 16.56% | 31.50% | 26.09% |
2010 | 23.48% | 10.23% | 14.47% | 29.92% | 21.90% |
2015 | 30.72% | 19.61% | 9.56% | 20.84% | 19.28% |
2018 | 24.49% | 26.92% | 10.04% | 19.34% | 19.21% |
Mean | 22.35% | 17.02% | 12.83% | 25.25% | 22.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhao, M.; Gao, Y.; Yu, Z.; Zhao, Z. Analyzing Spatial-Temporal Change of Vegetation Ecological Quality and Its Influencing Factors in Anhui Province, Eastern China Using Multiscale Geographically Weighted Regression. Appl. Sci. 2023, 13, 6359. https://doi.org/10.3390/app13116359
Wang T, Zhao M, Gao Y, Yu Z, Zhao Z. Analyzing Spatial-Temporal Change of Vegetation Ecological Quality and Its Influencing Factors in Anhui Province, Eastern China Using Multiscale Geographically Weighted Regression. Applied Sciences. 2023; 13(11):6359. https://doi.org/10.3390/app13116359
Chicago/Turabian StyleWang, Tao, Mingsong Zhao, Yingfeng Gao, Zhilin Yu, and Zhidong Zhao. 2023. "Analyzing Spatial-Temporal Change of Vegetation Ecological Quality and Its Influencing Factors in Anhui Province, Eastern China Using Multiscale Geographically Weighted Regression" Applied Sciences 13, no. 11: 6359. https://doi.org/10.3390/app13116359