Cross-Industry Principles for Digital Representations of Complex Technical Systems in the Context of the MBSE Approach: A Review
Abstract
:1. Introduction
- A review of publications related to the description of the digital representation of complex technical systems in various industries.
- Identification of common features of the descriptions of complex technical systems in the formation of their digital representation and formulation of the identified features in the form of principles.
- An analysis of the applications of the identified principles for digital representations of systems and formation of appropriate recommendations for application of these principles for creation of a digital representation of the representation of complex technical systems.
2. Literature Review
2.1. Industry 4.0 and the Increased Complexity of Systems
2.2. Digital Solutions and Digital Representation of Systems
2.3. The MBSE Approach as a Tool for Creating a Digital Representation of a System
2.4. Digital Representation as a Stage of Creating a Digital Twin
- The first stage implies that there is only a real object or process.
- In the second stage, “mirroring” occurs, where a digital version of the real object or process is created, describing the real counterpart with varying degrees of accuracy.
- The third stage begins when a connection is established between a real object or process and their digital version.
- In the fourth stage, there is a convergence and even an intersection of a real object or process with their digital versions.
2.5. Cross-Industry Principles for Digital Representation
3. Materials and Methods
- Business processes;
- Production;
- Mechanical engineering;
- IT sector;
- Energy;
- Civil engineering;
- Military sector;
- Aerospace industry.
- The MBSE method should be used semantically, with each concept assigned values within the system and the created digital representation of the real system.
- MBSE should comply with metamodeling criteria, including general rules for building models, such as object types, object parameters, and how to establish relationships between objects.
- Modeling should be carried out ontologically, with certain rules for describing the creation of models, including the types of objects, parameters of objects, and rules for relations between objects.
- The object of modeling should be a certain system and the subject of modeling can be various participants related to this system.
4. Results
5. Discussion
5.1. Additional Recommendations for Applying the Principles Formulated above to Develop a Digital Representation of Complex Technical Systems
5.2. Commonality in Digital Transformation
5.3. Problems in Applying the MBSE Approach
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gezgin, E.; Huang, X.; Samal, P.; Silva, I. Digital Transformation: Raising Supply-Chain Performance to New Levels; McKinsey & Company: New York, NY, USA, 2017. [Google Scholar]
- Ebert, C.; Duarte, C.H.C. Digital Transformation. IEEE Softw. 2018, 35, 16–21. [Google Scholar] [CrossRef]
- Institute, M.G. Digital Europe: Realizing the Continent’s Potential. Available online: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/digital-europe-realizing-the-continents-potential (accessed on 15 January 2023).
- McKinsey & Company. Digital Transformation Market Size to Reach USD 2669.48 Billion in 2030|Emergen Research. Available online: https://www.bloomberg.com/press-releases/2023-01-11/digital-transformation-market-size-to-reach-usd-2-669-48-billion-in-2030-emergen-research (accessed on 15 January 2023).
- Kő, A.; Fehér, P.; Szabó, Z. Digital Transformation—A Hungarian Overview. Econ. Bus. Rev. 2019, 21, 3. [Google Scholar] [CrossRef]
- Yadykin, V.; Barykin, S.; Badenko, V.; Bolshakov, N.; de la Poza, E.; Fedotov, A. Global Challenges of Digital Transformation of Markets: Collaboration and Digital Assets. Sustainability 2021, 13, 10619. [Google Scholar] [CrossRef]
- Tian, G.; Li, B.; Cheng, Y. Does Digital Transformation Matter for Corporate Risk-Taking? Financ. Res. Lett. 2022, 49, 103107. [Google Scholar] [CrossRef]
- Wen, H.; Zhong, Q.; Lee, C.-C. Digitalization, Competition Strategy and Corporate Innovation: Evidence from Chinese Manufacturing Listed Companies. Int. Rev. Financ. Anal. 2022, 82, 102166. [Google Scholar] [CrossRef]
- Zhai, H.; Yang, M.; Chan, K.C. Does Digital Transformation Enhance a Firm’s Performance? Evidence from China. Technol. Soc. 2022, 68, 101841. [Google Scholar] [CrossRef]
- Wu, K.; Fu, Y.; Kong, D. Does the Digital Transformation of Enterprises Affect Stock Price Crash Risk? Financ. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Badenko, V.; Bolshakov, N.; Tishchenko, E.B.; Fedotov, A.A.; Celani, A.; Yadykin, V. Integration of Digital Twin and BIM Technologies within Factories of the Future. Mag. Civ. Eng. 2021, 101, 10144. [Google Scholar] [CrossRef]
- Ulas, D. Digital Transformation Process and SMEs. Procedia Comput. Sci. 2019, 158, 662–671. [Google Scholar] [CrossRef]
- Schulz, A.P.; Clausing, D.P.; Fricke, E.; Negele, H. Development and Integration of Winning Technologies as Key to Competitive Advantage. Syst. Eng. 2000, 3, 180–211. [Google Scholar] [CrossRef]
- Bumann, J.; Peter, M.K. Action Fields of Digital Transformation—A Review and Comparative Analysis of Digital Transformation Maturity Models and Frameworks. In Digitalisierung und Andere Innovationsformen im Management. Innovation und Unternehmertum; Edition Gesowip: London, UK, 2019. [Google Scholar]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Campo, K.X.; Teper, T.; Eaton, C.E.; Shipman, A.M.; Bhatia, G.; Mesmer, B. Model-Based Systems Engineering: Evaluating Perceived Value, Metrics, and Evidence through Literature. Syst. Eng. 2023, 26, 104–129. [Google Scholar] [CrossRef]
- Auzan, A.A.; Bakhtigaraeva, A.I.; Bryzgalin, V.A.; Zolotov, A.V.; Nikishina, E.N.; Pripuzova, N.A.; Stavinskaya, A.A. Sociocultural Factors in Economics: Milestones and Perspectives. Vopr. Ekon. 2020, 7, 75–91. [Google Scholar] [CrossRef]
- Borovkov, A.; Rozhdestvenskiy, O.; Pavlova, E.; Glazunov, A.; Savichev, K. Key Barriers of Digital Transformation of the High-Technology Manufacturing: An Evaluation Method. Sustainability 2021, 13, 11153. [Google Scholar] [CrossRef]
- Vitolo, F.; Rega, A.; Di Marino, C.; Pasquariello, A.; Zanella, A.; Patalano, S. Mobile Robots and Cobots Integration: A Preliminary Design of a Mechatronic Interface by Using MBSE Approach. Appl. Sci. 2022, 12, 419. [Google Scholar] [CrossRef]
- Pang, T.Y.; Pelaez Restrepo, J.D.; Cheng, C.-T.; Yasin, A.; Lim, H.; Miletic, M. Developing a Digital Twin and Digital Thread Framework for an ‘Industry 4.0’ Shipyard. Appl. Sci. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Lopes, A.J.; Lezama, R.; Pineda, R. Model Based Systems Engineering for Smart Grids as Systems of Systems. Procedia Comput. Sci. 2011, 6, 441–450. [Google Scholar] [CrossRef]
- Coles, J.L.; Daniel, N.D.; Naveen, L. Managerial Incentives and Risk-Taking. J. Financ. Econ. 2006, 79, 431–468. [Google Scholar] [CrossRef]
- Faccio, M.; Marchica, M.-T.; Mura, R. CEO Gender, Corporate Risk-Taking, and the Efficiency of Capital Allocation. J. Corp. Financ. 2016, 39, 193–209. [Google Scholar] [CrossRef]
- Acharya, V.V.; Amihud, Y.; Litov, L. Creditor Rights and Corporate Risk-Taking. J. Financ. Econ. 2011, 102, 150–166. [Google Scholar] [CrossRef]
- Kini, O.; Williams, R. Tournament Incentives, Firm Risk, and Corporate Policies. J. Financ. Econ. 2012, 103, 350–376. [Google Scholar] [CrossRef]
- Li, K.; Griffin, D.; Yue, H.; Zhao, L. How Does Culture Influence Corporate Risk-Taking? J. Corp. Financ. 2013, 23, 1–22. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y. How Does Labor Protection Influence Corporate Risk-Taking? Evidence from China. Pac.-Basin Financ. J. 2021, 68, 101572. [Google Scholar] [CrossRef]
- Wen, F.; Li, C.; Sha, H.; Shao, L. How Does Economic Policy Uncertainty Affect Corporate Risk-Taking? Evidence from China. Financ. Res. Lett. 2021, 41, 101840. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, C.; Liu, C. Economic Policy Uncertainty and Corporate Risk-Taking: Loss Aversion or Opportunity Expectations. Pac.-Basin Financ. J. 2021, 69, 101640. [Google Scholar] [CrossRef]
- Corbets, J.B.; Willy, C.J.; Bischoff, J.E. Evaluating System Architecture Quality and Architecting Team Performance Using Information Quality Theory. IEEE Syst. J. 2018, 12, 1139–1147. [Google Scholar] [CrossRef]
- Danneels, L.; Viaene, S. Identifying Digital Transformation Paradoxes: A Design Perspective. Bus. Inf. Syst. Eng. 2022, 64, 483–500. [Google Scholar] [CrossRef]
- Habermehl, C.; Höpfner, G.; Berroth, J.; Neumann, S.; Jacobs, G. Optimization Workflows for Linking Model-Based Systems Engineering (MBSE) and Multidisciplinary Analysis and Optimization (MDAO). Appl. Sci. 2022, 12, 5316. [Google Scholar] [CrossRef]
- Benbya, H.; McKelvey, B. Toward a Complexity Theory of Information Systems Development. Inf. Technol. People 2006, 19, 12–34. [Google Scholar] [CrossRef]
- Basnet, S.; Bahootoroody, A.; Chaal, M.; Valdez Banda, O.A.; Lahtinen, J.; Kujala, P. A Decision-Making Framework for Selecting an MBSE Language—A Case Study to Ship Pilotage. Expert Syst. Appl. 2022, 193, 116451. [Google Scholar] [CrossRef]
- Mhenni, F.; Vitolo, F.; Rega, A.; Plateaux, R.; Hehenberger, P.; Patalano, S.; Choley, J.-Y. Heterogeneous Models Integration for Safety Critical Mechatronic Systems and Related Digital Twin Definition: Application to a Collaborative Workplace for Aircraft Assembly. Appl. Sci. 2022, 12, 2787. [Google Scholar] [CrossRef]
- Scuotto, V.; Magni, D.; Palladino, R.; Nicotra, M. Triggering Disruptive Technology Absorptive Capacity by CIOs. Explorative Research on a Micro-Foundation Lens. Technol. Forecast. Soc. Chang. 2022, 174, 121234. [Google Scholar] [CrossRef]
- Riesener, M.; Doelle, C.; Perau, S.; Lossie, P.; Schuh, G. Methodology for Iterative System Modeling in Agile Product Development. Procedia CIRP 2021, 100, 439–444. [Google Scholar] [CrossRef]
- Oueidat, D.; Eude, T.; Guarnieri, F. Contribution of the Stamp Model to Accident Analysis: Offloading Operations on a Floating Production Storage and Offloading (FPSO). In Advanced Sciences and Technologies for Security Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 179–196. [Google Scholar]
- Russell, M. Using MBSE to Enhance System Design Decision Making. Procedia Comput. Sci. 2012, 8, 188–193. [Google Scholar] [CrossRef]
- Montgomery, P.R. Model-Based System Integration (MBSI)—Key Attributes of MBSE from the System Integrator’s Perspective. Procedia Comput. Sci. 2013, 16, 313–322. [Google Scholar] [CrossRef]
- Henderson, K.; McDermott, T.; Van Aken, E.; Salado, A. Towards Developing Metrics to Evaluate Digital Engineering. Syst. Eng. 2023, 26, 3–31. [Google Scholar] [CrossRef]
- Henderson, K.; Salado, A. Value and Benefits of Model-based Systems Engineering (MBSE): Evidence from the Literature. Syst. Eng. 2021, 24, 51–66. [Google Scholar] [CrossRef]
- INCOSE. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 9781118999400. [Google Scholar]
- Watson -Chair, M.; Mesmer, B.; Roedler, G.; Rousseau, D.; Calvo-Amodio, J.; Keating, C.; Miller, W.D.; Lucero, S.; Gold, R.; Jones, C.; et al. Systems Engineering Principles; INCOSE: San Diego, CA, USA, 2022; ISBN 9781937076085. [Google Scholar]
- Brahmi, R.; Belhadj, I.; Hammadi, M.; Aifaoui, N.; Choley, J.-Y. CAD-MBSE Interoperability for the Checking of Design Requirements Based on Assemblability Indicators. Appl. Sci. 2022, 12, 566. [Google Scholar] [CrossRef]
- Madni, A.M.; Sievers, M. Model-Based Systems Engineering: Motivation, Current Status, and Research Opportunities. Syst. Eng. 2018, 21, 172–190. [Google Scholar] [CrossRef]
- Prokhorov, A.; Lysachev, M.; Mikhail, A.B. Digital Twin. Analysis, Trends, World Experience; AlliancePrint: South Boston, MA, USA, 2020. [Google Scholar]
- Grieves, M.; Building Digital Twin Congress. Authoring Digital Twin Concept. Available online: https://www.youtube.com/watch?v=0S74PBdYicU (accessed on 20 January 2023).
- Augustine, P. The Industry Use Cases for the Digital Twin Idea. In Advances in Computers; Elsevier Science: Amsterdam, The Netherlands, 2020; Volume 117. [Google Scholar]
- Kitain, L. The New Age of Manufacturing: Digital Twin Technology & IIoT. The New Age of Manufacturing. Available online: https://medium.com/@lior.kitain/the-new-age-of-manufacturing-digital-twin-technology-iiot-494acee5572a. (accessed on 20 January 2023).
- Gregory, J.; Berthoud, L.; Tryfonas, T.; Rossignol, A.; Faure, L. The Long and Winding Road: MBSE Adoption for Functional Avionics of Spacecraft. J. Syst. Softw. 2020, 160, 110453. [Google Scholar] [CrossRef]
- Bougain, S.; Gerhard, D. Integrating Environmental Impacts with SysML in MBSE Methods. Procedia CIRP 2017, 61, 715–720. [Google Scholar] [CrossRef]
- Wang, Y.; Steinbach, T.; Klein, J.; Anderl, R. Integration of Model Based System Engineering into the Digital Twin Concept. Procedia CIRP 2021, 100, 19–24. [Google Scholar] [CrossRef]
- Khan, S.; Farnsworth, M.; McWilliam, R.; Erkoyuncu, J. On the Requirements of Digital Twin-Driven Autonomous Maintenance. Annu. Rev. Control 2020, 50, 13–28. [Google Scholar] [CrossRef]
- Khandoker, A.; Sint, S.; Gessl, G.; Zeman, K.; Jungreitmayr, F.; Wahl, H.; Wenigwieser, A.; Kretschmer, R. Towards a Logical Framework for Ideal MBSE Tool Selection Based on Discipline Specific Requirements. J. Syst. Softw. 2022, 189, 111306. [Google Scholar] [CrossRef]
- Wolfswinkel, J.F.; Furtmueller, E.; Wilderom, C.P.M. Using Grounded Theory as a Method for Rigorously Reviewing Literature. Eur. J. Inf. Syst. 2013, 22, 45–55. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the EASE ‘14: 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Yang, L.; Cormican, K.; Yu, M. Ontology-Based Systems Engineering: A State-of-the-Art Review. Comput. Ind. 2019, 111, 148–171. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Zimmermann, T.C.; Stark, R. Systematic Literature Review of System Models for Technical System Development. Appl. Sci. 2021, 11, 3014. [Google Scholar] [CrossRef]
- Hanelt, A.; Bohnsack, R.; Marz, D.; Antunes Marante, C. A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change. J. Manag. Stud. 2021, 58, 1159–1197. [Google Scholar] [CrossRef]
- Keskin, B.; Salman, B.; Koseoglu, O. Architecting a BIM-Based Digital Twin Platform for Airport Asset Management: A Model-Based System Engineering with SysML Approach. J. Constr. Eng. Manag. 2022, 148, 04022020. [Google Scholar] [CrossRef]
- Herzig, S.J.I. A Bayesian Learning Approach to Inconsistency Identification in Model-Based Systems Engineering. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2015. [Google Scholar]
- Patria, G.S. Model-Based Systems Engineering Application to Analyze the Ground Vehicle and Robotics Sustainment Support Strategy. ProQuest Dissertation, Lawrence Technological University, Southfield, MI, USA, 2017. [Google Scholar]
- Muvuna, J.; Boutaleb, T.; Baker, K.J.; Mickovski, S.B. A Methodology to Model Integrated Smart City System from the Information Perspective. Smart Cities 2019, 2, 496–511. [Google Scholar] [CrossRef]
- Fischer, P.M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A. Implementing Model-Based System Engineering for the Whole Lifecycle of a Spacecraft. CEAS Space J. 2017, 9, 351–365. [Google Scholar] [CrossRef]
- Kübler, K.; Scheifele, S.; Scheifele, C.; Riedel, O. Model-Based Systems Engineering for Machine Tools and Production Systems (Model-Based Production Engineering). Procedia Manuf. 2018, 24, 216–221. [Google Scholar] [CrossRef]
- Arrasmith, W. Systems Engineering and Analysis of Electro-Optical and Infrared Systems; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4665-7992-7. [Google Scholar]
- Delbrügger, T.; Rossmann, J.R. Representing Adaptation Options in Experimentable Digital Twins of Production Systems. Int. J. Comput. Integr. Manuf. 2019, 32, 352–365. [Google Scholar] [CrossRef]
- Laing, C.; David, P.; Blanco, E.; Dorel, X. Questioning Integration of Verification in Model-Based Systems Engineering: An Industrial Perspective. Comput. Ind. 2020, 114, 103163. [Google Scholar] [CrossRef]
- Kobayashi, N.; Yamada, H.; Utsunomiya, H.; Morisaki, S.; Yamamoto, S. The Evaluation Knowledge of Standard Software Asset Using the Seven Samurai Framework. Procedia Comput. Sci. 2016, 96, 782–790. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Ali, S.; Yue, T. Model-Based Security Engineering for Cyber-Physical Systems: A Systematic Mapping Study. Inf. Softw. Technol. 2017, 83, 116–135. [Google Scholar] [CrossRef]
- Keskin, B.; Salman, B. Building Information Modeling Implementation Framework for Smart Airport Life Cycle Management. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 98–112. [Google Scholar] [CrossRef]
- Chen, Y.; Jupp, J. Model-Based Systems Engineering and Through-Life Information Management in Complex Construction. IFIP Adv. Inf. Commun. Technol. 2018, 540, 80–92. [Google Scholar] [CrossRef]
- Torres, W.; van den Brand, M.; Serebrenik, A. Model Management Tools for Models of Different Domains: A Systematic Literature Review. In Proceedings of the 2019 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 8–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Bemmami, K.E.; David, P. Managing the Use of Simulation in Systems Engineering: An Industrial State of Practice and a Prioritization Method. Comput. Ind. 2021, 131, 103486. [Google Scholar] [CrossRef]
- Hennig, C.; Viehl, A.; Kämpgen, B.; Eisenmann, H. Ontology-Based Design of Space Systems. In The Semantic Web—ISWC 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9982, pp. 308–334. [Google Scholar] [CrossRef]
- Xuemei, L.; Xiaolang, Y. A Visualization Framework for Product Manufacturing Data. Procedia CIRP 2021, 104, 1046–1051. [Google Scholar] [CrossRef]
- Cameron, B.; Adsit, D.M. Model-Based Systems Engineering Uptake in Engineering Practice. IEEE Trans. Eng. Manag. 2020, 67, 152–162. [Google Scholar] [CrossRef]
- Lemazurier, L.; Chapurlat, V.; Grossetête, A. An MBSE Approach to Pass from Requirements to Functional Architecture. IFAC-PapersOnLine 2017, 50, 7260–7265. [Google Scholar] [CrossRef]
- Spütz, K.; Berges, J.; Jacobs, G.; Berroth, J.; Konrad, C. Classification of Simulation Models for the Model-Based Design of Plastic-Metal Hybrid Joints. Procedia CIRP 2022, 109, 37–42. [Google Scholar] [CrossRef]
- Arista, R.; Mas, F.; Morales-Palma, D.; Vallellano, C. Industrial Resources in the Design of Reconfigurable Manufacturing Systems for Aerospace: A Systematic Literature Review. Comput. Ind. 2022, 142, 103719. [Google Scholar] [CrossRef]
- Riedel, R.; Jacobs, G.; Konrad, C.; Singh, R.; Sprehe, J. Managing Knowledge and Parameter Dependencies with MBSE in Textile Product Development Processes. Procedia CIRP 2020, 91, 170–175. [Google Scholar] [CrossRef]
- D’Ambrosio, J.; Soremekun, G. Systems Engineering Challenges and MBSE Opportunities for Automotive System Design. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2075–2080. [Google Scholar] [CrossRef]
- Berjawi, A.E.H.; Walker, S.L.; Patsios, C.; Hosseini, S.H.R. An Evaluation Framework for Future Integrated Energy Systems: A Whole Energy Systems Approach. Renew. Sustain. Energy Rev. 2021, 145, 111163. [Google Scholar] [CrossRef]
- Ray, D.; Ramirez-Marquez, J. A Framework for Probabilistic Model-Based Engineering and Data Synthesis. Reliab. Eng. Syst. Saf. 2020, 193, 106679. [Google Scholar] [CrossRef]
- Poller, A. Exploring and Managing the Complexity of Large Infrastructure Projects with Network Theory and Model-Based Systems Engineering—The Example of Radioactive Waste Disposal. Syst. Eng. 2020, 23, 443–459. [Google Scholar] [CrossRef]
- Matar, M.; Osman, H.; Georgy, M.; Abou-Zeid, A.; El-Said, M. Evaluation of Civil Infrastructure Sustainability A Model-Based Systems Engineering (MBSE) Approach. In eWork and eBusiness in Architecture, Engineering and Construction; ECPPM: London, UK, 2014; pp. 327–334. ISBN 9781138027107. [Google Scholar]
- Kaslow, D. CubeSat Model-Based System Engineering (MBSE) Reference Model—Application in the Concept Lifecycle Phase. In Proceedings of the AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015; American Institute of Aeronautics and Astronautics: Reston, Virginia, 2015; p. 4474. [Google Scholar]
- Polacsek, T.; Roussel, S.; Bouissiere, F.; Cuiller, C.; Dereux, P.-E.; Kersuzan, S. Towards Thinking Manufacturing and Design Together: An Aeronautical Case Study. In Conceptual Modeling; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10650, pp. 340–353. [Google Scholar] [CrossRef]
- Mordecai, Y.; Orhof, O.; Dori, D. Model-Based Interoperability Engineering in Systems-of-Systems and Civil Aviation. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 637–648. [Google Scholar] [CrossRef]
- Garro, A.; Tundis, A. Modeling of System Properties: Research Challenges and Promising Solutions. ISSE 2015, 324–331. [Google Scholar] [CrossRef]
- Wu, Q.; Gouyon, D.; Levrat, E.; Boudau, S. Use of Patterns for Know-How Reuse in a Model-Based Systems Engineering Framework. IEEE Syst. J. 2020, 14, 4765–4776. [Google Scholar] [CrossRef]
- Torres, W.; Van Den Brand, M.G.J.; Serebrenik, A. A Systematic Literature Review of Cross-Domain Model Consistency Checking by Model Management Tools. Softw. Syst. Model. 2021, 20, 897–916. [Google Scholar] [CrossRef]
- Dori, D.; Wengrowicz, N.; Dori, Y.J. A Comparative Study of Languages for Model-Based Systems-of-Systems Engineering (MBSSE). In Proceedings of the 2014 World Automation Congress (WAC), Waikoloa, HI, USA, 3—7 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 790–796. [Google Scholar]
- Sjarov, M.; Kißkalt, D.; Lechler, T.; Selmaier, A.; Franke, J. Towards “Design for Interoperability” in the Context of Systems Engineering. Procedia CIRP 2021, 96, 145–150. [Google Scholar] [CrossRef]
- Reis, M.S.; Saraiva, P.M. Data-Centric Process Systems Engineering: A Push towards PSE 4.0. Comput. Chem. Eng. 2021, 155, 107529. [Google Scholar] [CrossRef]
- Mousavi, B.A.; Heavey, C.; Azzouz, R.; Ehm, H.; Millauer, C.; Knobloch, R. Use of Model-Based System Engineering Methodology and Tools for Disruption Analysis of Supply Chains: A Case in Semiconductor Manufacturing. J. Ind. Inf. Integr. 2022, 28, 100335. [Google Scholar] [CrossRef]
- Konrad, C.; Jacobs, G.; Rasor, R.; Riedel, R.; Katzwinkel, T.; Siebrecht, J. Enabling Complexity Management through Merging Business Process Modeling with MBSE. Procedia CIRP 2019, 84, 451–456. [Google Scholar] [CrossRef]
- Yu, C.; Li, Q.; Liu, K.; Chen, Y.; Wei, H. Industrial Design and Development Software System Architecture Based on Model-Based Systems Engineering and Cloud Computing. Annu. Rev. Control 2021, 51, 401–423. [Google Scholar] [CrossRef]
- Masior, J.; Schneider, B.; Kürümlüoglu, M.; Riedel, O. Beyond Model-Based Systems Engineering towards Managing Complexity. Procedia CIRP 2020, 91, 325–329. [Google Scholar] [CrossRef]
- Riedel, R.; Jacobs, G.; Wyrwich, F.; Siebrecht, J. Identification of Dependencies between Product Parameters and Process Stakeholders. Procedia CIRP 2021, 100, 247–252. [Google Scholar] [CrossRef]
- Valdes, F.; Gentry, R.; Eastman, C.; Forrest, S. Applying Systems Modeling Approaches to Building Construction. In Proceedings of the 33rd ISARC, Auburn, AL, USA, 18–21 July 2016; pp. 844–852. [Google Scholar] [CrossRef]
- Wach, P.; Zeigler, B.P.; Salado, A. Conjoining Wymore’s Systems Theoretic Framework and the DEVS Modeling Formalism: Toward Scientific Foundations for MBSE. Appl. Sci. 2021, 11, 4936. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Zhuang, C.; Liu, Z.; Miao, T. Construction Method of Shop-Floor Digital Twin Based on MBSE. J. Manuf. Syst. 2021, 60, 93–118. [Google Scholar] [CrossRef]
- Rasor, R.; Göllner, D.; Bernijazov, R.; Kaiser, L.; Dumitrescu, R. Towards Collaborative Life Cycle Specification of Digital Twins in Manufacturing Value Chains. Procedia CIRP 2021, 98, 229–234. [Google Scholar] [CrossRef]
- Göllner, D.; Rasor, R.; Anacker, H.; Dumitrescu, R. Collaborative Modeling of Interoperable Digital Twins in a SoS Context. Procedia CIRP 2022, 107, 1089–1094. [Google Scholar] [CrossRef]
- Redmond, A.M. Measuring the Performance Characteristics of MBSE Techniques with BIM for the Construction Industry. In Proceedings of the 2018 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK, 2–5 September 2018; pp. 40–45. [Google Scholar] [CrossRef]
- Böhm, W.; Henkler, S.; Houdek, F.; Vogelsang, A.; Weyer, T. Bridging the Gap between Systems and Software Engineering by Using the SPES Modeling Framework as a General Systems Engineering Philosophy. Procedia Comput. Sci. 2014, 28, 187–194. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Zhang, Z. From Simple Digital Twin to Complex Digital Twin Part II: Multi-Scenario Applications of Digital Twin Shop Floor. Adv. Eng. Inform. 2023, 56, 101915. [Google Scholar] [CrossRef]
- Aiello, F.; Garro, A.; Lemmens, Y.; Dutre, S. Simulation-Based Verification of System Requirements: An Integrated Solution. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 726–731. [Google Scholar] [CrossRef]
- Lamnabhi-Lagarrigue, F.; Annaswamy, A.; Engell, S.; Isaksson, A.; Khargonekar, P.; Murray, R.M.; Nijmeijer, H.; Samad, T.; Tilbury, D.; Van den Hof, P. Systems & Control for the Future of Humanity, Research Agenda: Current and Future Roles, Impact and Grand Challenges. Annu. Rev. Control 2017, 43, 1–64. [Google Scholar] [CrossRef]
- Baklouti, A.; Nguyen, N.; Mhenni, F.; Choley, J.-Y.; Mlika, A. Improved Safety Analysis Integration in a Systems Engineering Approach. Appl. Sci. 2019, 9, 1246. [Google Scholar] [CrossRef]
- Huang, Z.; Swalgen, S.; Davidz, H.; Murray, J. MBSE-Assisted FMEA Approach—Challenges and Opportunities. In Proceedings of the 2017 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA, 23–26 January 2017. [Google Scholar] [CrossRef]
- Bassam, S.; Herrmann, J.W.; Schmidt, L.C. Using SysML for Model-Based Vulnerability Assessment. Procedia Comput. Sci. 2015, 44, 413–422. [Google Scholar] [CrossRef]
- Klappholz, D.; Port, D. Introduction to MBASE (Model-Based (System) Architecting and Software Engineering). Adv. Comput. 2004, 62, 203–248. [Google Scholar] [CrossRef]
- Bachelor, G.; Brusa, E.; Ferretto, D.; Mitschke, A. Model-Based Design of Complex Aeronautical Systems through Digital Twin and Thread Concepts. IEEE Syst. J. 2020, 14, 1568–1579. [Google Scholar] [CrossRef]
- Olbort, J.; Röhm, B.; Kutscher, V.; Anderl, R. Integration of Communication Using OPC UA in MBSE for the Development of Cyber-Physical Systems. Procedia CIRP 2022, 109, 227–232. [Google Scholar] [CrossRef]
- Ring, J.; Troncale, L. An Unambiguous Language for Systems Process Design and Engineering. Procedia Comput. Sci. 2014, 28, 635–642. [Google Scholar] [CrossRef]
- Heber, D.T.; Groll, M.W. A Meta-Model to Connect Model-Based Systems Engineering with Product Data Management by Dint of the Blockchain. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 280–287. [Google Scholar]
- Romero, V.; Pinquié, R.; Noël, F. A User-Centric Computer-Aided Verification Process in a Virtuality-Reality Continuum. Comput. Ind. 2022, 140, 103678. [Google Scholar] [CrossRef]
- Gaignebet, A.; Chapurlat, V.; Zacharewicz, G.; Richet, V.; Plana, R. A Model Based System Commissioning Approach for Nuclear Facilities. Sustainability 2021, 13, 10520. [Google Scholar] [CrossRef]
- Graignic, P.; Vosgien, T.; Jankovic, M.; Tuloup, V.; Berquet, J.; Troussier, N. Complex System Simulation: Proposition of a MBSE Framework for Design-Analysis Integration. Procedia Comput. Sci. 2013, 16, 59–68. [Google Scholar] [CrossRef]
- Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital Twins-Based Smart Manufacturing System Design in Industry 4.0: A Review. J. Manuf. Syst. 2021, 60, 119–137. [Google Scholar] [CrossRef]
- Douglass, B.P. Agile Systems Requirements Definition and Analysis. Agil. Syst. Eng. 2016, 189–279. [Google Scholar] [CrossRef]
- Irshad, L.; Demirel, H.O.; Tumer, I.Y. Automated Generation of Fault Scenarios to Assess Potential Human Errors and Functional Failures in Early Design Stages. J. Comput. Inf. Sci. Eng. 2020, 20, 051009. [Google Scholar] [CrossRef]
- Wu, Q.; Gouyon, D.; Levrat, E. Maturity Assessment of Systems Engineering Reusable Assets to Facilitate MBSE Adoption. IFAC-PapersOnLine 2021, 54, 851–856. [Google Scholar] [CrossRef]
- Taraila, W.M. Model Based Systems Engineering for a Venture Class Launch Facility. Mech. Aerosp. Eng. Theses Diss. 2020. [Google Scholar] [CrossRef]
- Alanen, J.; Linnosmaa, J.; Malm, T.; Papakonstantinou, N.; Ahonen, T.; Heikkilä, E.; Tiusanen, R. Hybrid Ontology for Safety, Security, and Dependability Risk Assessments and Security Threat Analysis (STA) Method for Industrial Control Systems. Reliab. Eng. Syst. Saf. 2022, 220, 108270. [Google Scholar] [CrossRef]
- dos Santos, F.L.M.; Pastorino, R.; Peeters, B.; Faria, C.; Desmet, W.; Carlos, L.; Góes, S.; Van Der Auweraer, H. Model Based System Testing: Bringing Testing and Simulation Close Together. In Structural Health Monitoring, Damage Detection & Mechatronics; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Berlin/Heidelberg, Germany, 2016; Volume 7, pp. 91–97. [Google Scholar]
- Cole, B.; Mittal, V.; Gillespie, S.; La, N.; Wise, R.; Maccalman, A. Model-Based Systems Engineering: Application and Lessons from a Technology Maturation Project. Procedia Comput. Sci. 2019, 153, 202–209. [Google Scholar] [CrossRef]
- Zhao, J.; Xi, X.; Zhang, L.; Hsu, C.-H.; Kumar, P.M. Reuse of Knowledge by Efficient Data Analytics to Fix Societal Challenges. Inf. Process. Manag. 2022, 59, 102764. [Google Scholar] [CrossRef]
- Chapurlat, V.; Nastov, B. Deploying MBSE in SME Context: Revisiting and Equipping Digital Mock-Up. In Proceedings of the 2020 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 12 October–12 November 2020; IEEE: Piscataway, NJ, USA, 2020; p. 9272230. [Google Scholar]
- Tan, C.S.; Van Bossuyt, D.L.; Hale, B. System Analysis of Counter-Unmanned Aerial Systems Kill Chain in an Operational Environment. Systems 2021, 9, 79. [Google Scholar] [CrossRef]
- Do, Q.; Cook, S.; Lay, M. An Investigation of MBSE Practices across the Contractual Boundary. Procedia Comput. Sci. 2014, 28, 692–701. [Google Scholar] [CrossRef]
- Halstenberg, F.A.; Lindow, K.; Stark, R. Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering. Sustainability 2019, 11, 3517. [Google Scholar] [CrossRef]
- Bordeleau, F.; Combemale, B.; Eramo, R.; van den Brand, M.; Wimmer, M. Towards Model-Driven Digital Twin Engineering: Current Opportunities and Future Challenges. In Systems Modelling and Management; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 43–54. [Google Scholar]
- Huff, J.; Medal, H.; Griendling, K. A Model-Based Systems Engineering Approach to Critical Infrastructure Vulnerability Assessment and Decision Analysis. Syst. Eng. 2019, 22, 114–133. [Google Scholar] [CrossRef]
- Bickford, J.; Van Bossuyt, D.L.; Beery, P.; Pollman, A. Operationalizing Digital Twins through Model-Based Systems Engineering Methods. Syst. Eng. 2020, 23, 724–750. [Google Scholar] [CrossRef]
- Grenyer, A.; Erkoyuncu, J.A.; Zhao, Y.; Roy, R. A Systematic Review of Multivariate Uncertainty Quantification for Engineering Systems. CIRP J. Manuf. Sci. Technol. 2021, 33, 188–208. [Google Scholar] [CrossRef]
- Albers, A.; Scherer, H.; Bursac, N.; Rachenkova, G. Model Based Systems Engineering in Construction Kit Development—Two Case Studies. Procedia CIRP 2015, 36, 129–134. [Google Scholar] [CrossRef]
- Hubert, A.; Forgez, C.; Yvars, P.-A. Designing the Architecture of Electrochemical Energy Storage Systems. A Model-Based System Synthesis Approach. J. Energy Storage 2022, 54, 105351. [Google Scholar] [CrossRef]
- Li, M.; Batmaz, F.; Guan, L.; Grigg, A.; Ingham, M.; Bull, P. Model-Based Systems Engineering with Requirements Variability for Embedded Real-Time Systems. In Proceedings of the 2015 IEEE International Model-Driven Requirements Engineering Workshop (MoDRE), Ottawa, ON, Canada, 24–24 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–10. [Google Scholar]
- Mas, F.; Racero, J.; Oliva, M.; Morales-Palma, D. A Preliminary Methodological Approach to Models for Manufacturing (MfM). In Product Lifecycle Management to Support Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2018; Volume 540, pp. 273–283. [Google Scholar]
- Gardan, J.; Matta, N. Enhancing Knowledge Management into Systems Engineering through New Models in SysML. Procedia CIRP 2017, 60, 169–174. [Google Scholar] [CrossRef]
- Polyanska, A.; Savchuk, S.; Zapukhliak, I.; Zaiachuk, Y.; Stankovska, I. Digital Maturity of the Enterprise as an Assessment of Its Ability to Function in Industry 4.0. In Advances in Manufacturing III; Springer: Berlin/Heidelberg, Germany, 2022; pp. 209–227. [Google Scholar] [CrossRef]
- Kocaoglu, B.; Demir, E. Maturity Assesstment in the Technology Business within the Mckinsey s 7S Framework. Pressacademia 2019, 6, 158–166. [Google Scholar] [CrossRef]
- Metzler, D.R.; Muntermann, J. The Impact of Digital Transformation on Incumbent Firms: An Analysis of Changes, Challenges, and Responses at the Business Model Level. In Proceedings of the International Conference on Information Systems, ICIS 2020—Making Digital Inclusive: Blending the Local and the Global, Hyderabad, India, 13–16 December 2020. [Google Scholar]
- Mordecai, Y.; Fairbanks, J.P.; Crawley, E.F. Category-Theoretic Formulation of the Model-Based Systems Architecting Cognitive-Computational Cycle. Appl. Sci. 2021, 11, 1945. [Google Scholar] [CrossRef]
System of systems level principles | Metamodeling Ontology |
Semantics | |
Stability | |
Hierarchy | |
Unified standards | |
Interoperability | |
Transformability | |
Iterative principle | |
Systematic verification Lifecycle | |
Subsystem level principles | Subjectivity principle |
Reverse functional | |
Independence | |
Networking principle | |
Externalization | |
Minimization | |
Systematic validation | |
Reusing | |
Visualization | |
3D model usage | |
“Black box” | |
Generativity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolshakov, N.; Badenko, V.; Yadykin, V.; Tishchenko, E.; Rakova, X.; Mohireva, A.; Kamsky, V.; Barykin, S. Cross-Industry Principles for Digital Representations of Complex Technical Systems in the Context of the MBSE Approach: A Review. Appl. Sci. 2023, 13, 6225. https://doi.org/10.3390/app13106225
Bolshakov N, Badenko V, Yadykin V, Tishchenko E, Rakova X, Mohireva A, Kamsky V, Barykin S. Cross-Industry Principles for Digital Representations of Complex Technical Systems in the Context of the MBSE Approach: A Review. Applied Sciences. 2023; 13(10):6225. https://doi.org/10.3390/app13106225
Chicago/Turabian StyleBolshakov, Nikolai, Vladimir Badenko, Vladimir Yadykin, Elena Tishchenko, Xeniya Rakova, Arina Mohireva, Vladimir Kamsky, and Sergey Barykin. 2023. "Cross-Industry Principles for Digital Representations of Complex Technical Systems in the Context of the MBSE Approach: A Review" Applied Sciences 13, no. 10: 6225. https://doi.org/10.3390/app13106225
APA StyleBolshakov, N., Badenko, V., Yadykin, V., Tishchenko, E., Rakova, X., Mohireva, A., Kamsky, V., & Barykin, S. (2023). Cross-Industry Principles for Digital Representations of Complex Technical Systems in the Context of the MBSE Approach: A Review. Applied Sciences, 13(10), 6225. https://doi.org/10.3390/app13106225