Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Procedures and Experimental Design
2.2. Skin Temperature Assessment
2.3. Statistical Analyses
3. Results
3.1. Dominant and Non-Dominant Comparison
3.2. Pre-Training and Post-Training Comparison
3.3. Correlation Analysis
- Racket weight and variation in thermal symmetry in the anterior arm (p = 0.03, r = 0.71) and lower back (p = 0.04, r = 0.70), both positively and moderately correlated.
- BMI correlates negatively with symmetry variation in anterior shoulder temperature (p = 0.04, r = −0.68) but positively with posterior knee temperature (p < 0.01, r = 0.81). The former was a moderate correlation, while the latter was strong.
- The variation in overall fatigue correlates positively with the variation in temperature symmetry in the arm (p < 0.01; r = 0.81) and posterior shoulder (p < 0.01; r = 0.81) regions. Both correlations were strong.
- Overall pain variation and thermal symmetry variation in the posterior knee (p < 0.01; r = −0.81) and anterior leg (p = 0.02; r = 0.75) show a correlation. The first was negative and strong, while the second was positive and moderate.
4. Discussion
4.1. Dominant and Non-Dominant Comparison
4.2. Pre-Training and Post-Training Comparison
4.3. Correlation Analysis
4.4. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chudecka, M.; Lubkowska, A.; Leźnicka, K.; Krupecki, K. The Use of Thermal Imaging in the Evaluation of the Symmetry of Muscle Activity in Various Types of Exercises (Symmetrical and Asymmetrical). J. Hum. Kinet. 2015, 49, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Gil-Calvo, M.; Herrero-Marco, J.; González-Peña, R.; Pérez-Soriano, P.; Priego-Quesada, J. Acute Effect of Induced Asymmetrical Running Technique on Foot Skin Temperature. J. Therm. Biol. 2020, 19, 102613. [Google Scholar] [CrossRef] [PubMed]
- Priego Quesada, J.I.; Cibrián Ortiz de Anda, R.M.; Pérez-Soriano, P.; Salvador Palmer, R. Introduction: Historical Perspective of Infrared Thermography and Its Application in Sport Science. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Biological and Medical Physics, Biomedical Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–23. ISBN 978-3-319-47410-6. [Google Scholar]
- Niu, H.H.; Lui, P.W.; Hu, J.S.; Ting, C.K.; Yin, Y.C.; Lo, Y.L.; Liu, L.; Lee, T.Y. Thermal Symmetry of Skin Temperature: Normative Data of Normal Subjects in Taiwan. Zhonghua Yi Xue Za Zhi 2001, 64, 459–468. [Google Scholar] [PubMed]
- Vardasca, R.; Ring, E.F.J.; Plassmann, P.; Jones, C. Termal Symmetry of the Upper and Lower Extremities in Healthy Subjects. Thermol. Int. 2012, 22, 53–60. [Google Scholar]
- Amaro, A.M.; Paulino, M.F.; Neto, M.A.; Roseiro, L. Hand-Arm Vibration Assessment and Changes in the Thermal Map of the Skin in Tennis Athletes during the Service. Int. J. Environ. Res. Public Health 2019, 16, 5117. [Google Scholar] [CrossRef]
- Alvero Cruz, J.R.; Jiménez Rodríguez, M.; Pérez Lagos, F.; García Romero, J. Asimetría de Miembros Superiores En Tenistas. Implicaciones Cineantropométricas. Apunt. Sport. Med. 1995, 32, 51–58. [Google Scholar]
- Sanchis-Sanchis, R.; Priego-Quesada, J.I.; Ribas-Garcia, V.; Carpes, F.P.; Encarnacion-Martinez, A.; Perez-Soriano, P. Effects of Asymmetrical Exercise Demands on the Symmetry of Skin Temperature in Archers. Physiol. Meas. 2020, 41, 114002. [Google Scholar] [CrossRef]
- Mündermann, A.; Nigg, B.M.; Stefanyshyn, D.J.; Humble, R.N. Development of a Reliable Method to Assess Footwear Comfort during Running. Gait Posture 2002, 16, 38–45. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Moreira, D.G.; Cano, S.P.; Quintana, M.S.; Soares, D.D.; de Andrade Fernandes, A.; da Silva, F.S.; Costa, C.M.A.; dos Santos Amorim, P.R. Time Required to Stabilize Thermographic Images at Rest. Infrared Phys. Technol. 2014, 65, 30–35. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Priego-Quesada, J.I.; Catalá-Vilaplana, I.; Bermejo-Ruiz, J.L.; Gandia-Soriano, A.; Pellicer-Chenoll, M.T.; Encarnación-Martínez, A.; Cibrián Ortiz de Anda, R.; Salvador-Palmer, R. Effect of 10 Km Run on Lower Limb Skin Temperature and Thermal Response after a Cold-Stress Test over the Following 24 h. J. Therm. Biol. 2022, 105, 103225. [Google Scholar] [CrossRef] [PubMed]
- Trecroci, A.; Formenti, D.; Ludwig, N.; Gargano, M.; Bosio, A.; Rampinini, E.; Alberti, G. Bilateral Asymmetry of Skin Temperature Is Not Related to Bilateral Asymmetry of Crank Torque during an Incremental Cycling Exercise to Exhaustion. PeerJ 2018, 6, e4438. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, R.H.O. Tenis: Potencia, Velocidad y Movilidad; INDE Publicaciones: Barcelona, Spain, 2004; ISBN 978-84-95114-61-7. [Google Scholar]
- de Andrade Fernandes, A.; dos Santos Amorim, P.R.; Brito, C.J.; de Moura, A.G.; Moreira, D.G.; Costa, C.M.A.; Sillero-Quintana, M.; Marins, J.C.B. Measuring Skin Temperature before, during and after Exercise: A Comparison of Thermocouples and Infrared Thermography. Physiol. Meas. 2014, 35, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Arnaiz-Lastras, J.; Fernández Cuevas, I.; Lopez-Diaz, C.J.; Carmona, P.; Quintana, M. Aplicación Práctica de La Termografía Infrarroja En El Fútbol Profesional. Rev. Prep. Física Fútbol 2014, 3, 6–15. [Google Scholar]
- Formenti, D.; Merla, A.; Priego Quesada, J.I. The Use of Infrared Thermography in the Study of Sport and Exercise Physiology. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Biological and Medical Physics, Biomedical Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 111–136. ISBN 978-3-319-47410-6. [Google Scholar]
- Priego Quesada, J.I.; De la Fuente, C.; Kunzler, M.; Perez-Soriano, P.; Hervas Marin, D.; Carpes, F. Relationship between Skin Temperature, Electrical Manifestations of Muscle Fatigue, and Exercise-Induced Delayed Onset Muscle Soreness for Dynamic Contractions: A Preliminary Study. Int. J. Environ. Res. Public Health 2020, 17, 6817. [Google Scholar] [CrossRef]
- Alcocer, C.C. La Fisiología de La Termorregulación. RFM 1960, 11, 731–736. [Google Scholar]
- Cramer, M.N.; Jay, O. Biophysical Aspects of Human Thermoregulation during Heat Stress. Auton. Neurosci. 2016, 196, 3–13. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Fernández-Cuevas, I.; Arnaiz-Lastras, J.; Fernandes, A.A.; Sillero-Quintana, M. Aplicaciones de la termografía infrarroja en el deporte. Una revisión/Applications of Infrared Thermography in Sports. A Review. Rev. Int. Med. Cienc. Act. Física Del Deporte 2015, 15, 805–824. [Google Scholar]
- Collins, K.; Young, S.; Hung, Y. The Impacts of Shoulder Position Sense, Vision, Racket Weight, and Gender on Racket Positioning Accuracy in Tennis Players. Int. J. Exerc. Sci. 2020, 13, 1086–1097. [Google Scholar]
- Li, L.; Yang, S.H.; Hwang, C.-S.; Kim, Y.S. Effects of String Tension and Impact Location on Tennis Playing. J. Mech. Sci. Technol. 2009, 23, 2990–2997. [Google Scholar] [CrossRef]
- Creveaux, T.; Dumas, R.; Chèze, L.; Macé, P.; Rogowski, I. Influence of Racket Polar Moment on Joint Loads during Tennis Forehand Drive. Comput. Methods Biomech. Biomed. Eng. 2013, 16 (Suppl. 1), 99–101. [Google Scholar] [CrossRef] [PubMed]
- Giles, B.; Reid, M. Applying the Brakes in Tennis: How Entry Speed Affects the Movement and Hitting Kinematics of Professional Tennis Players. J. Sports Sci. 2021, 39, 259–266. [Google Scholar] [CrossRef] [PubMed]
Pre-Training (SD) | Post-Fatigue (SD) | Pre vs. Post (p Value) | |
---|---|---|---|
Fatigue perception | |||
General | 4.6 (2.1) | 6.7 (3.1) | 0.01 |
Trunk | 3.3 (2.3) | 4.3 (2.9) | 0.05 |
Shoulder | 2.7 (2.0) | 4.6 (2.8) | 0.01 |
Arms | 2.9 (2.1) | 5.4 (3.8) | 0.04 |
Gluteus | 2.9 (2.6) | 4.0 (3.4) | 0.03 |
Thigh | 3.3 (2.5) | 5.1 (3.1) | 0.02 |
Knee | 1.2 (2.1) | 2.0 (2.6) | 0.01 |
Leg and Feet | 3.2 (2.3) | 6.0 (3.9) | 0.01 |
Pain perception | |||
General | 2.5 (1.4) | 2.1 (1.3) | 0.39 |
Trunk | 2.2 (2.0) | 2.1 (1.9) | 0.66 |
Shoulder | 1.4 (1.8) | 2.6 (3.3) | 0.06 |
Arms | 1.5 (2.2) | 1.3 (1.7) | 0.44 |
Gluteus | 1.9 (1.4) | 2.2 (1.2) | 0.19 |
Thigh | 1.8 (1.7) | 1.4 (1.0) | 0.27 |
Knee | 1.3 (1.8) | 1.5 (2.2) | 0.25 |
Leg and Feet | 1.1 (1.0) | 1.5 (1.4) | 0.10 |
Age | Racket Weight | String Tension | Years of Experience | BMI | Δ General Fatigue | Δ General Pain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | r | p | |
Δ Anterior Forearm | 0.39 | 0.30 | −0.01 | 0.99 | −0.28 | 0.47 | 0.28 | 0.47 | −0.27 | 0.49 | −0.19 | 0.62 | 0.76 | 0.85 |
Δ Posterior Forearm | −0.11 | 0.79 | 0.55 | 0.12 | −0.39 | 0.30 | −0.21 | 0.59 | −0.25 | 0.52 | 0.62 | 0.77 | −0.87 | 0.82 |
Δ Anterior Arm | 0.48 | 0.19 | 0.71 | 0.03 | −0.51 | 0.16 | 0.05 | 0.91 | −0.42 | 0.26 | 0.39 | 0.30 | 0.13 | 0.7 |
Δ Posterior Arm | 0.11 | 0.78 | 0.61 | 0.08 | −0.23 | 0.56 | 0.05 | 0.90 | −0.39 | 0.30 | 0.81 | 0.01 | −0.52 | 0.90 |
Δ Anterior Shoulder | −0.17 | 0.66 | 0.66 | 0.06 | −0.48 | 0.20 | −0.34 | 0.37 | −0.68 | 0.04 | 0.44 | 0.23 | 0.38 | 0.31 |
Δ Posterior Shoulder | −0.21 | 0.59 | 0.55 | 0.13 | −0.37 | 0.32 | −0.28 | 0.46 | −0.25 | 0.52 | 0.81 | 0.01 | −0.11 | 0.77 |
Δ Abdominal | −0.33 | 0.39 | 0.48 | 0.19 | −0.43 | 0.25 | −0.33 | 0.39 | −0.30 | 0.43 | 0.19 | 0.62 | 0.07 | 0.87 |
Δ Lumbar | −0.36 | 0.34 | 0.70 | 0.04 | −0.28 | 0.46 | −0.34 | 0.37 | −0.42 | 0.26 | 0.51 | 0.16 | 0.30 | 0.44 |
Δ Anterior Thigh | −0.01 | 0.98 | −0.15 | 0.70 | −0.53 | 0.14 | 0.21 | 0.59 | 0.37 | 0.33 | 0.11 | 0.79 | 0.11 | 0.79 |
Δ Posterior Thigh | −0.47 | 0.20 | 0.06 | 0.87 | 0.53 | 0.15 | −0.50 | 0.17 | −0.27 | 0.48 | 0.42 | 0.26 | −0.38 | 0.31 |
Δ Anterior Knee | 0.37 | 0.33 | 0.23 | 0.55 | −0.26 | 0.50 | 0.58 | 0.10 | 0.59 | 0.09 | 0.41 | 0.28 | −0.50 | 0.17 |
Δ Posterior Knee | 0.29 | 0.45 | −0.95 | 0.81 | −0.20 | 0.61 | 0.43 | 0.25 | 0.81 | 0.01 | −0.8 | 0.83 | −0.81 | 0.01 |
Δ Anterior Leg | −0.33 | 0.39 | −0.34 | 0.37 | 0.05 | 0.90 | −0.14 | 0.71 | −0.16 | 0.69 | −0.53 | 0.14 | 0.75 | 0.02 |
Δ Posterior Leg | 0.03 | 0.94 | 0.56 | 0.12 | −0.33 | 0.38 | 0.14 | 0.73 | 0.30 | 0.43 | 0.33 | 0.39 | −0.39 | 0.30 |
ROI | Δ Thermal Symmetry (SD) |
---|---|
Anterior Forearm | 0.8 °C (0.5) |
Posterior Forearm | 0.7 °C (1.1) |
Anterior Arm | 0.1 °C (0.6) |
Posterior Arm | 0.0 °C (1.2) |
Anterior Shoulder | 0.2 °C (0.5) |
Posterior Shoulder | 0.0 °C (0.5) |
Abdominals | 0.0 °C (0.4) |
Lumbar | −0.2 °C (0.4) |
Anterior Thigh | 0.0 °C (0.3) |
Posterior Thigh | 0.0 °C (0.4) |
Anterior Knee | −0.2 °C (0.4) |
Posterior Knee | 0.0 °C (0.3) |
Anterior Leg | −0.1 °C (0.2) |
Posterior Leg | 0.0 °C (0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzano-Felisatti, J.M.; Martinez-Amaya, A.; Priego-Quesada, J.I. Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players. Appl. Sci. 2023, 13, 628. https://doi.org/10.3390/app13010628
Marzano-Felisatti JM, Martinez-Amaya A, Priego-Quesada JI. Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players. Applied Sciences. 2023; 13(1):628. https://doi.org/10.3390/app13010628
Chicago/Turabian StyleMarzano-Felisatti, Joaquín Martín, Anna Martinez-Amaya, and José Ignacio Priego-Quesada. 2023. "Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players" Applied Sciences 13, no. 1: 628. https://doi.org/10.3390/app13010628
APA StyleMarzano-Felisatti, J. M., Martinez-Amaya, A., & Priego-Quesada, J. I. (2023). Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players. Applied Sciences, 13(1), 628. https://doi.org/10.3390/app13010628