Design of Multi-Cell Cooperative Control Algorithm Based on Fuzzy Brain Emotional Learning
Abstract
:1. Introduction
2. Cell Manipulation Based on Holographic Optical Tweezers
2.1. Principle of Optical Tweezers Technology
2.2. Holographic Optical Tweezer System
2.3. Dynamic Model
3. Single-Cell Manipulation Control
3.1. Dynamic Model Analysis
3.2. Cell Manipulation Controller Design
3.3. Convergence Analyses
4. Multiple Cell Manipulation Control
4.1. Multi-Cell Dynamics Model
4.2. Multi-Cell Controller Design
5. Simulation Results
5.1. Control Single Cell
5.2. Control Multiple Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Back Propagation |
FBEL | Fuzzy Brain Emotional Learning |
FBELNN | Fuzzy Brain Emotional Learning Neural Network |
FCMNN | Fuzzy Cerebellar Model Neural Network |
PI | Proportional-Integral controller |
PID | Proportional–Integral–Derivative controller |
RBF | Radial Basis Function |
RBFNN | Radial Basis Function Neural Network |
RMSE | Root Mean Square Error |
SLM | Space Light Modulator |
References
- Ashkin, A.; Dziedzic, M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, S.; Kong, M.; Wang, Z.; Costa, K.D.; Li, R.A.; Sun, D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011, 11, 3656–3662. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, S.; Chow, Y.T.; Kong, C.W.; Li, R.A.; Sun, D. A microengineered cell fusion approach with combined optical tweezers and microwell array technologies. RSC Adv. 2013, 3, 23589–23595. [Google Scholar] [CrossRef]
- Chowdhury, S.; Švec, P.; Wang, C.; Seale, K.T.; Wikswo, J.P.; Losert, W.; Gupta, S.K. Automated cell transport in optical tweezers-assisted microfluidic chambers. IEEE Trans. Autom. Sci. Eng. 2013, 10, 980–989. [Google Scholar] [CrossRef]
- Fang, T.; Shang, W.; Liu, C.; Xu, J.; Zhao, D.; Liu, Y.; Ye, A. Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers. Anal. Chem. 2019, 91, 9932–9939. [Google Scholar] [CrossRef]
- Keloth, A.; Anderson, O.; Risbridger, D.; Paterson, L. Single cell isolation using optical tweezers. Micromachines 2018, 9, 434. [Google Scholar] [CrossRef]
- Jing, P.; Liu, Y.; Keeler, E.G.; Cruz, N.M.; Freedman, B.S.; Lin, L.Y. Optical tweezers system for live stem cell organization at the single-cell level. Biomed. Opt. Express 2018, 9, 771–779. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Zhong, M.C.; Wei, X.B.; Zhou, J.H.; Wang, Z.Q.; Li, Y.M. Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.C.; Chen, P.W.; Fu, C.M.; Wu, J.M. Particles sorting in micro-channel system utilizing magnetic tweezers and optical tweezers. J. Magn. Magn. Mater. 2013, 333, 87–92. [Google Scholar] [CrossRef]
- Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 1991, 89, 2140–2143. [Google Scholar] [CrossRef] [PubMed]
- Samadi, M.; Alibeigloo, P.; Aqhili, A.; Khosravi, M.A.; Saeidi, F.; Vasini, S.; Ghorbanzadeh, M.; Darbari, S.; Moravvej-Farshi, M.K. Plasmonic tweezers: Towards nanoscale manipulation. Opt. Lasers Eng. 2022, 154, 107001. [Google Scholar] [CrossRef]
- Kotnala, A.; Kollipara, P.S.; Zheng, Y. Opto-thermoelectric speckle tweezers. Nanophotonics 2020, 9, 927–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzo, A.; Drinkwater, B.W. Holographic acoustic tweezers. Proc. Natl. Acad. Sci. USA 2019, 116, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, M.; Shakoor, A.; Wu, C. Manipulation of biological cells using a robot-aided optical tweezers system. Micromachines 2018, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Xiong, T.; Wang, Z.; Liu, Y.; Zhou, Z. Research progress of optical tweezers in the detection of single cell and single-molecule properties. Laser J. 2021, 42, 7–17. [Google Scholar]
- Cheah, C.; Li, X.; Yan, X.; Sun, D. Simple PD Control Scheme for Robotic Manipulation of Biological Cell. IEEE Trans. Autom. Control 2015, 60, 1427–1432. [Google Scholar] [CrossRef]
- Xie, M.; Li, X.; Wang, Y.; Liu, Y.; Sun, D. Saturated PID Control for the Optical Manipulation of Biological Cells. IEEE Trans. Control Syst. Technol. 2018, 26, 1909–1916. [Google Scholar] [CrossRef]
- Aguilar-Ibañez, C.; Suarez-Castanon, M.S.; Rosas-Soriano, L.I. A simple control scheme for the manipulation of a particle by means of optical tweezers. Int. J. Robust Nonlinear Control 2011, 21, 328–337. [Google Scholar] [CrossRef]
- Zeng, G.Q.; Xie, X.Q.; Chen, M.R.; Weng, J. Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm Evol. Comput. 2019, 44, 320–334. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J. An adaptive RBF neural network control method for a class of nonlinear systems. IEEE/CAA J. Autom. Sin. 2018, 5, 457–462. [Google Scholar] [CrossRef]
- Dong, Z.; Bao, T.; Zheng, M.; Yang, X.; Song, L.; Mao, Y. Heading control of unmanned marine vehicles based on an improved robust adaptive fuzzy neural network control algorithm. IEEE Access 2019, 7, 9704–9713. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zeng, Q.; Tong, S.; Chen, C.P.; Liu, L. Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans. Ind. Electron. 2019, 66, 9458–9466. [Google Scholar] [CrossRef]
- Bai, W.; Zhou, Q.; Li, T.; Li, H. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybern. 2019, 50, 3433–3443. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zhao, W.; Liu, L.; Li, D.; Tong, S.; Chen, C.P. Adaptive neural network control for a class of nonlinear systems with function constraints on states. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Khorashadizadeh, S.; Zadeh, S.M.H.; Koohestani, M.R.; Shekofteh, S.; Erkaya, S. Robust model-free control of a class of uncertain nonlinear systems using BELBIC: Stability analysis and experimental validation. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 1–12. [Google Scholar] [CrossRef]
- Ebrahimnejad, A. An effective computational attempt for solving fully fuzzy linear programming using MOLP problem. J. Ind. Prod. Eng. 2019, 36, 59–69. [Google Scholar] [CrossRef]
- Sori, A.A.; Ebrahimnejad, A.; Motameni, H. The fuzzy inference approach to solve multi-objective constrained shortest path problem. J. Intell. Fuzzy Syst. 2020, 38, 4711–4720. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Nasseri, S. Linear programmes with trapezoidal fuzzy numbers: A duality approach. Int. J. Oper. Res. 2012, 13, 67–89. [Google Scholar] [CrossRef]
- Lin, C.; Chung, C. Fuzzy brain emotional learning control system design for nonlinear systems. Int. J. Fuzzy Syst. 2015, 17, 117–128. [Google Scholar] [CrossRef]
- Muthusamy, P.K.; Garratt, M.; Pota, H.; Muthusamy, R. Realtime Adaptive Intelligent Control System for Quadcopter UAV with Payload Uncertainties. IEEE Trans. Ind. Electron. 2021, 69, 1641–1653. [Google Scholar] [CrossRef]
- Lin, Q.; Xu, Z.; Lin, C. Battery-Supercapacitor State-of-Health Estimation for Hybrid Energy Storage System Using a Fuzzy Brain Emotional Learning Neural Network. Int. J. Fuzzy Syst. 2022, 24, 12–26. [Google Scholar] [CrossRef]
- Pang, H.; Li, W.; Wang, X.; Zhao, S.; Zhou, Z. The latest research and applications of holographic optical tweezers. Laser J. 2019, 40, 1–6. [Google Scholar]
- Huang, Y.; Zhang, Z.; Menq, C. Minimum-variance Brownian motion control of an optically trapped probe. Appl. Opt. 2009, 48, 5871–5880. [Google Scholar] [CrossRef]
- Arai, F.; Yoshikawa, K.; Sakami, T.; Fukuda, T. Synchronized laser micromanipulation of multiple targets along each trajectory by single laser. Appl. Phys. Lett. 2004, 85, 4301–4303. [Google Scholar] [CrossRef]
- Gittes, F.; Schmidt, C. Signals and noise in micromechanical measurements. Methods Cell Biol. 1997, 55, 129–156. [Google Scholar]
- Wu, Y.; Sun, D.; Huang, W. Mechanical force characterization in manipulating live cells with optical tweezers. J. Biomech. 2011, 44, 741–746. [Google Scholar] [CrossRef]
- Dong, X. Robotic Manipulation of Biological Cells Based on Optical Tweezers; Shenzhen University: Shenzhen, China, 2018. [Google Scholar]
- Zhou, W. The influence of viscous resistance of fluid on body motion. Tech. Phys. Teach. 2009, 17, 27–28. [Google Scholar]
- Zhang, Z.; Cui, G. Hydrodynamics; Tsinghua University Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Wu, Y.; Chen, H.; Sun, D.; Huang, W. Force characterization of live cells in automated transportation with robot-tweezers manipulation system. 2010 IEEE International Conference on Mechatronics and Automation. 2010, 1913–1918. [Google Scholar]
- Oertel, H. Prandtl’s Essentials of Fluid Mechanics.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Hu, S.; Chen, S.; Chen, S.; Xu, G.; Sun, D. Automated transportation of multiple cell types using a robot-aided cell manipu-lation system with holographic optical tweezers. IEEE/ASME Trans. Mechatron. 2017, 22, 804–814. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, Z.; Lu, Y.; Zhao, Q.; Ru, C.; Sun, Y. Robotic manipulation of deformable cells for orientation control. IEEE Trans. Robot. 2020, 36, 271–283. [Google Scholar] [CrossRef]
- Hu, S.; Sun, D. Automatic transportation of biological cells with a robot-tweezer manipulation system. Int. J. Robot. Res. 2022, 30, 1681–1694. [Google Scholar] [CrossRef]
- Su, H.; Qi, W.; Chen, J.; Zhang, D. Fuzzy Approximation-based Task-Space Control of Robot Manipulators with Remote Center of Motion Constraint. IEEE Trans. Fuzzy Syst. 2022, 30, 1564–1573. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Q.; Lin, C.M. Online health estimate of hybrid energy storage system based on fuzzy brain emotional learning neural networks. In Proceedings of the 2020 International Conference on System Science and Engineering, Kagawa, Japan, 31 August–3 September 2020; pp. 511–516. [Google Scholar]
- Shang, M. Research on Cooperative Formation Control Technology for Multi-Mobile Robots; Beijing University of Posts and Telecommunications: Beijing, China, 2021. [Google Scholar]
- Hsu, C.F. Intelligent total sliding-mode control with dead-zone parameter modification for a DC motor driver. IET Control Theory Appl. 2014, 8, 916–926. [Google Scholar] [CrossRef]
Speed of Cells ( m/s) | |
---|---|
5 | 0.09 |
7.5 | 0.1 |
10 | 0.09 |
Data Type | Main Controller | X-Axis | Y-Axis |
---|---|---|---|
RMSE of Single-cell manipulation | PI | 8.2016 × 10−6 | 5.0930 × 10−6 |
PID | 7.7955 × 10−6 | 4.8561 × 10−6 | |
BP | 3.5697 × 10−6 | 2.9983 × 10−6 | |
RBFNN | 3.5188 × 10−6 | 2.9389 × 10−6 | |
FCMNN | 3.2798 × 10−6 | 2.6285 × 10−6 | |
This work | 2.8583 × 10−6 | 2.1381 × 10−6 |
Captured Cell | |
---|---|
Yeast cell 1 | (2.65, 5) |
Yeast cell 2 | (8.16, 61.5) |
Yeast cell 3 | (15, 0) |
Data Type | Main Controller | Cell 1 | Cell 2 | Cell 3 |
---|---|---|---|---|
RMSE of each cell in the X-axis direction | PI | 8.2016 × 10−6 | 5.7012 × 10−6 | 3.4229 × 10−6 |
PID | 7.7836 × 10−6 | 5.4168 × 10−6 | 3.2786 × 10−6 | |
BP | 3.5322 × 10−6 | 3.4547 × 10−6 | 2.8029 × 10−6 | |
RBFNN | 3.7211 × 10−6 | 3.1396 × 10−6 | 2.6596 × 10−6 | |
FCMNN | 3.3970 × 10−6 | 2.9586 × 10−6 | 2.3933 × 10−6 | |
This work | 2.6599 × 10−6 | 2.2398 × 10−6 | 1.4882 × 10−6 | |
RMSE of each cell in the Y-axis direction | PI | 5.0930 × 10−6 | 4.3229 × 10−6 | 1.9634 × 10−6 |
PID | 4.8497 × 10−6 | 4.1085 × 10−6 | 1.8935 × 10−6 | |
BP | 3.3223 × 10−6 | 3.6277 × 10−6 | 1.4233 × 10−6 | |
RBFNN | 3.2235 × 10−6 | 3.0946 × 10−6 | 1.3616 × 10−6 | |
FCMNN | 2.9536 × 10−6 | 2.5967 × 10−6 | 1.2155 × 10−6 | |
This work | 2.1391 × 10−6 | 0.5858 × 10−6 | 0.5920 × 10−6 |
Captured Cell | |
---|---|
Yeast cell 1 | (21.39, 42.96) |
Yeast cell 2 | (0.13, 76.59) |
Yeast cell 3 | (−1.32, −11.53) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Hou, H.; Zheng, P.-S.; Wang, D.-H.; Yang, Y.-K. Design of Multi-Cell Cooperative Control Algorithm Based on Fuzzy Brain Emotional Learning. Appl. Sci. 2023, 13, 579. https://doi.org/10.3390/app13010579
Zhao J, Hou H, Zheng P-S, Wang D-H, Yang Y-K. Design of Multi-Cell Cooperative Control Algorithm Based on Fuzzy Brain Emotional Learning. Applied Sciences. 2023; 13(1):579. https://doi.org/10.3390/app13010579
Chicago/Turabian StyleZhao, Jing, Hui Hou, Peng-Sheng Zheng, Da-Han Wang, and Yong-Kuan Yang. 2023. "Design of Multi-Cell Cooperative Control Algorithm Based on Fuzzy Brain Emotional Learning" Applied Sciences 13, no. 1: 579. https://doi.org/10.3390/app13010579
APA StyleZhao, J., Hou, H., Zheng, P.-S., Wang, D.-H., & Yang, Y.-K. (2023). Design of Multi-Cell Cooperative Control Algorithm Based on Fuzzy Brain Emotional Learning. Applied Sciences, 13(1), 579. https://doi.org/10.3390/app13010579