Grid-Connected Solar Photovoltaic System for Nile Tilapia Farms in Southern Mexico: Techno-Economic and Environmental Evaluation
Abstract
:1. Introduction
2. Literature Review
2.1. Importance of Aquaculture and Tilapia Production in Mexico
2.2. Global Trends in Renewable Energy Production
2.3. Solar Energy Potential, Regulations, Solar Resource and Costs in Mexico
2.4. Constitution of Photovoltaic Systems
2.5. Photovoltaic Systems in the Agricultural Sector in Mexico
2.6. Photovoltaic Systems in the Aquaculture
2.7. Research Limitations
2.8. Contributions
3. Materials and Methods
3.1. Location of the Study and Unit of Analysis
3.2. Design and Regulatory Criteria
- Connection of photovoltaic systems to the low voltage electrical grid, with capacity up to 30 kw according to CFE specification G0100-04 [34].
- The Mexican Official Standard NOM-001-SEDE-2012, related to electrical installations (use), especially article 690 related to photovoltaic solar systems of the same standard [39].
- Technical Specification for grid-connected Photovoltaic Systems associated with productive agricultural and livestock projects [71], which establishes the minimum technical specifications to be met by photovoltaic systems interconnected to the grid, for use in productive agricultural or agribusiness projects promoted by the SADER (Secretary of Agriculture and Rural Development).
- Manual for the technical–economic evaluation of “Photovoltaic Systems Interconnected to the Electric Grid supported through the Shared Risk Trust Program” [72,73], in which the technical and financial criteria are established to ensure the feasibility and quality of photovoltaic projects in the agricultural sector and ensure the efficient allocation of economic resources for projects in the country.
3.3. Software Used and Data Analysis
3.4. Solar Power Calculation and Equipment and Sources of Information
4. Results and Discussion
4.1. Meteorological Data and Solar Hours
4.2. Energy Consumption of the Fish Farm
4.3. The Grid-Connected Photovoltaic Systems (On Grid-PV) Design
4.3.1. Selection of Solar Panels
4.3.2. Maximum Current (I max), Where (Isc) Is the Short-Circuit Current of the Panel
4.3.3. Conductor Results
4.3.4. For Voltage Drop (VD) in Direct Current
4.3.5. Operating Voltage of The String System
- (a)
- RMPPV (Rated Maximum Power Point Voltage)
- (b)
- The Maximum System Voltage is calculated by multiplying the value of Voc, and then multiplying that value by the number of modules in a series string.
4.3.6. Inverter Sizing and MPPT (Maximum Power Point Tracking)
4.3.7. Grounding
4.3.8. Overcurrent Protection
4.3.9. Piping
4.3.10. AC Current Results
4.3.11. Protection against Overcurrents
4.3.12. Tubing for AC Conductor
4.3.13. Photovoltaic Array Structures and Inclination
4.3.14. Estimated Energy Generation with the System
4.4. Costs of Grid-Connected Photovoltaic Systems (On Grid-PV)
4.5. Objectives of the Aquaculture Farm with Grid-Connected Photovoltaic Systems
4.6. Characteristics of the Grid-Connected Photovoltaic System (On Grid-PV)
4.7. Environmental Aspects: CO2 Emissions to the Environment
4.8. Financial Analysis Grid-Connected Photovoltaic Systems (On Grid-PV)
4.9. Sustainability in Aquaculture
4.10. Policies Aimed Particularly at Development
4.11. Application Conditions
4.12. Financing for Aquaculture Farms for Photovoltaic Systems
- Distributed Generation Support Program, operated by the Electric Energy Saving Trust (FIDE) [95].
- Business Eco-credit, provided by the (FIDE) Trust for Electric Energy Saving [96].
- Solar financing offered by (NAFIN) National Financing entity [97].
- Support Program for Sustainable Projects executed by the (FIRA) Agricultural Trust Funds [98].
- Fixed asset loans operated by (FND) National Financing for Agricultural, Rural, Forestry, and Fisheries Development [99].
4.13. Limitations for Its Implementation
5. Conclusions
Future Lines of Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betanzo-Torres, E.A. La Acuacultura en México y el Uso de Tecnología Biofloc como Alternativa Sustentable: Análisis de Adopción, Desarrollo y Comparativo con otras Tecnologías para el Cultivo de Tilapia (Oreochromis niloticus). Ph.D. Thesis, El Colegio de Veracruz, Veracruz, México, November 2019. [Google Scholar]
- CONAPESCA (Comisión Nacional de Pesca y Acuacultura). Subsidios en Materia Energética Instalaciones Acuícolas en México; Solicitud Portal de Transparencia del Gobierno de la República: Mazatlán, México, 2020. [Google Scholar]
- CONAPESCA (Comisión Nacional de Pesca y Acuacultura). Subsidies of 50% in Electricity Consumption Offered by CONAPESCA to Aquaculturists 2019. Available online: https://acuasesor.conapesca.gob.mx/noticia.php?id=206 (accessed on 25 May 2020).
- Hernández Ochoa, C.E. Reforma Energética-Electricidad; Fondo de Cultura Económica: Mexico City, México, 2018. [Google Scholar]
- CFE (Comisión Federal de Electricidad). Tarifa PDBT. Pequeña Demanda Baja Tensión hasta 25 kW-Mes. 2022. Available online: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/PequenaDemandaBT.aspx (accessed on 2 July 2021).
- Betanzo-Torres, E.A.; Marín-Muñiz, J.L.; de los Ángeles Piñar-Álvarez, M.; Celdrán-Sabater, D.; Mata-Alejandro, H. Desarrollo de la acuacultura con tecnología biofloc para producción de tilapia (Oreochromis niloticus) en regiones rurales de México. Rev. Int. Desarro. Reg. Sustentable 2020, 4, 42–45. Available online: http://rinderesu.com/index.php/rinderesu/article/view/40/45 (accessed on 10 December 2021).
- FAO (Food and Agriculture Organization of the United Nations). COVID-19 pandemic: Impact on fisheries and aquaculture. Information Paper. 2020. Available online: http://www.fao.org/2019-ncov/q-and-a/impact-on-fisheries-and-aquaculture/en/ (accessed on 5 June 2022).
- FAO (Food and Agriculture Organization of the United Nations). The Impact of COVID-19 on Fisheries and Aquaculture Food Systems, Possible Responses: Information Paper. 2020. Available online: https://www.fao.org/3/cb2537en/cb2537en.pdf (accessed on 5 June 2022).
- Martínez Cordero, J.; Campos, A.; Borrego, P.; Monroy, S.Y.; Meza, S. Efectos del COVID-19 en la Acuicultura de Tilapia en México Panorama Acuicola. 2020. Available online: https://issuu.com/designpublications/docs/panorama_acuicola_25-4_mayo_junio_2020 (accessed on 5 June 2020).
- Valenti, W.C.; Kimpara, J.M.; Preto, B.d.L.; Moraes-Valenti, P. Indicators of sustainability to assess aquaculture systems. Ecol. Indic. 2018, 88, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Esquivel Lopez, G.; Ruelas Mojardin, L. Proposals to promote sustainable development in Mexican aquaculture. An analysis through the paradigms of environmental management; Study Center for Sustainable Rural Development and Food Sovereignty. Chamber of Deputies, Mexico. 2021. Available online: http://201.147.98.23/Ver/Documento/4692 (accessed on 5 January 2022).
- Herbeck, L.S.; Unger, D.; Wu, Y.; Jennerjahn, T.C. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont. Shelf Res. 2013, 57, 92–104. [Google Scholar] [CrossRef]
- Platas-Rosado, D.E.; Hernández-Arzaba, J.C.; González-Reynoso, L. Importancia económico y social del sector acuícola en México. Agro Product. 2018, 10. Available online: https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/947 (accessed on 25 March 2022).
- Delfin, P.E.; Betanzo-Torres, E.; Arturo y Sandoval, H.L.C. Potential use of eco-technologies for sustainable aquaculture. In Jóvenes en la Ciencia, Tecnología, Innovación y Alimentos, 1st ed.; Chapter: I Innovacion 2020; Red Iberoamericana de Academias de Investigación A.C.: Xalapa, Mexico; Available online: https://www.researchgate.net/publication/350048468_Potential_use_of_eco-technologies_for_sustainable_aquaculture (accessed on 10 November 2022).
- Moura, R.S.T.; Valenti, W.C.; Henry-Silva, G.G. Corrigendum to ‘Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region’. Ecol. Indic. 2016, 66, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.F.; Assis, C.R.D.; Soares, K.L.S.; Rafael, R.E.Q.; Oliveira, V.M.; de Vasconcelos Filho, J.E.; França, R.C.P.; Lemos, D.; Bezerra, R.S. A comparative study on Nile tilapia under different culture systems: Effect on the growth parameters and proposition of new growth models. Aquaculture 2019, 503, 128–138. [Google Scholar] [CrossRef]
- CONAPESCA (Comisión Nacional de Pesca y Acuacultura). Anuario Estadístico de Acuacultura y Pesca 2020. Available online: https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca (accessed on 25 June 2021).
- INAPESCA (Instituto Nacional de Pesca). Tilapia Aquaculture 2020. Available online: https://www.gob.mx/inapesca/acciones-y-programas/acuacultura-tilapia (accessed on 25 December 2021).
- SADER. Mexico Advances as A Power in Aquaculture Production. 2017. Available online: https://bit.ly/3MKHveZ (accessed on 12 June 2021).
- CONAPESCA. List of Economic Units and Assets larger and Smaller Vessels and Aquaculture Facilities. National Registry of Fisheries and Aquaculture (RNPA). 2021. Available online: https://www.gob.mx/conapesca/documentos/registro-nacional-de-pesca-y-acuacultura-rnpa (accessed on 12 December 2021).
- Alvarez Torres, P.; Ramírez Martínez, C.; Orbe Mendoza, A. Development of Aquaculture in Mexico and Prospects for Rural Aquaculture. 1999. Available online: https://1library.co/document/yekok9ry-desarrollo-acuacultura-mexico-perspectivas-acuacultura-rural.html (accessed on 12 December 2022).
- FAO (Food and Agriculture Organization of the United Nations). Small ponds make a Big Difference. Integrating Fish with Crop and Livestock Farming; FAO: Rome, Italy, 2000; p. 30. Available online: https://www.fao.org/publications/card/fr/c/f707ce09-b119-5617-87c7-3e668fab7f79/ (accessed on 5 June 2022).
- Prein, M.; Ahmed, M. Integration of Aquaculture into Smallholder Farming Systems for Improved Food Security and Household Nutrition. Food Nutr. Bull. 2000, 21, 466–471. [Google Scholar] [CrossRef]
- COLPOS (Colegio de Posgradudados). Aquaculture: An Alternative for Food Security in Rural Areas 2018. Available online: https://www.colpos.mx/wb/index.php/notas-informativas/acuacultura-una-alternativa-para-la-seguridad-alimentaria-en-zonas-rurales (accessed on 5 June 2021).
- LGPAS (Ley General de Pesca y Acuacultura Sustentable). México 2018, Diario Oficial de la Federación. 24 July 2018. Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LGPAS_240418.pdf (accessed on 5 December 2021).
- Flores Nava, A. Diagnóstico de la Acuicultura de Recursos Limitados (AREL) y de la Acuicultura de la Micro y Pequeña Empresa (AMYPE) en América Latina; FAO: Rome, Italy, 2012. [Google Scholar]
- Phillips, M.; Subasinghe, R.; Tran, N.; Kassam, L.K.; Yee Chan, C. Aquaculture Big Numbers; FAO: Rome, Italy, 2016. [Google Scholar]
- ENERDATA. Anuario Estadístico Mundial de Energía 2021. 2021. Available online: https://es.enerdata.net/publicaciones/estadisticas-oferta-y-demanda-energia-mundial.html (accessed on 1 January 2021).
- Bchini, Q.; Crenes, M.; Pronel, B. Global Energy and Climate Trends 2022. Available online: https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html (accessed on 3 November 2022).
- SENER (Secretaria de Energía). Balance Nacional de Energía. 2020. Available online: https://www.gob.mx/sener/documentos/balance-nacional-de-energia-2019 (accessed on 1 January 2022).
- SENER (Secretaria de Energía). Programa de Desarrollo del Sistema Eléctrico Nacional (PRODESEN 2021-2035). 2021. Available online: https://www.gob.mx/sener/acciones-y-programas/programa-de-desarrollo-del-sistema-electrico-nacional-33462 (accessed on 1 January 2022).
- SENER (Secretaria de Energía). Prospectiva de Energías Renovables 2016–2030. 2018. Available online: https://www.gob.mx/cms/uploads/attachment/file/177622/Prospectiva_de_Energ_as_Renovables_2016-2030.pdf (accessed on 1 January 2022).
- DOF (Diario Oficial de la Federación). Resolucion por la que la Comision Reguladora de Energia Expide el Modelo de Contrato de Interconexion para Fuente de Energia Renovable o Sistema de Cogeneracion en Mediana Escala, y Sustituye el Modelo de Contrato de Interconexion para Fuente de Energia Solar en Pequeña Escala por el Modelo de Contrato de Interconexión para Fuente de Energía Renovable o Sistema de Cogeneracion en Pequeña Escala RES/054/2010. Secretaría de Energía. 2010. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5137984&fecha=08/04/2010#gsc.tab=0 (accessed on 1 March 2021).
- CFE (Comision Federal de Electricidad). Interconexión a la Red Eléctrica de Baja Tensión de Sistemas Fotovoltaicos con Capacidad hasta 30 kw. 2018. Available online: https://lapem.cfe.gob.mx/normas/pdfs/f/G0100-04.pdf (accessed on 1 March 2021).
- LIE (Ley de la Industria Eléctrica). Diario Oficial de la Federación, 5 November 2022. Available online: https://portalhcd.diputados.gob.mx/LeyesBiblio/pdf/LIElec_090321.pdf (accessed on 1 March 2021).
- LSPEE (Ley del Servicio Público de Energía Eléctrica. Diario Oficial de la Federación, 9 April 2012. Available online: https://www.senado.gob.mx/comisiones/energia/docs/marco_LSPEE.pdf (accessed on 1 March 2021).
- LGCC (Ley General de Cambio Climático). Diario Oficial de la Federación, 11 de mayo de 2022. Available online: http://www.diputados.gob.mx/LeyesBiblio/ref/lgcc.htm (accessed on 1 June 2022).
- LTE (Ley de Transición Energética). Diario Oficial de la Federación, 24 de diciembre de 2015. Available online: http://www.diputados.gob.mx/LeyesBiblio/ref/lte.htm (accessed on 1 March 2021).
- (SENER) Norma Oficial Mexicana NOM-001-SEDE-2012, Instalaciones Eléctricas (utilización) (México). Diario Oficial de la Federación, 29 de noviembre de 2012. Available online: http://dof.gob.mx/nota_detalle.php?codigo=5280607&fecha=29/11/2012&print=true (accessed on 1 March 2021).
- Sánchez Estone, L.G. México: El momento trascendental en la historia solar. Energ. Renov. 2016, 4, 33–34. Available online: https://anes.org.mx/wp-content/uploads/2019/04/RER_31.pdf (accessed on 1 March 2021).
- Limon Porillo, A. Energía Solar en México: Su Potencial y Aprovechamiento. (Centro de Investigación Económica y Presupuestaria). 2017. Available online: https://ciep.mx/x3Da (accessed on 1 March 2021).
- Mertens, K. Photovoltaics: Fundamentals, Technology, and Practice, 2nd ed.; Wiley & Sons Ltd.: Oxford, UK, 2018. [Google Scholar]
- Becerra López, H.; Agredano Díaz, J.; Huacuz Villamar, J. Guía de usuario Sistemas Fotovoltaicos Interconectados con la Red, Aplicaciones de Pequeña Escala (No. 1). 2010. Available online: https://ecotec.unam.mx/wp-content/uploads/Guia-de-Usuario-para-Sistemas-de-Interconexion.pdf (accessed on 1 March 2021).
- CFE (Comision Federal de Electricidad). Contrato de Interconexión. 2020. Available online: https://www.cfe.mx/hogar/nuevocontrato/pages/contratacion_interconexion_hogar.aspx (accessed on 1 March 2021).
- SAGARPA. Secretaría de Agricultura Ganadería Desarrollo Rural Pesca y Alimentación. Las Energías Renovables en el Sector Agropecuario, 1st ed.; Biblioteca Constitucional: Cuidad de Mexico, Mexico, 2016; pp. 1–74. [Google Scholar]
- Vo, T.T.E.; Je, S.-M.; Jung, S.-H.; Choi, J.; Huh, J.-H.; Ko, H.-J. Review of Photovoltaic Power and Aquaculture in Desert. Energies 2022, 15, 3288. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.-H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. [Google Scholar] [CrossRef]
- Gorjian, S.; Singh, R.; Shukla, A.; Mazhar, A.R. On-Farm Applications of Solar PV Systems. In Photovoltaic Solar Energy Conversion; Academic Press: Cambridge, MA, USA, 2020; pp. 147–190. [Google Scholar] [CrossRef]
- Pringle, A.M.; Handler, R.M.; Pearce, J.M. Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, A.; Iqbal, M.T. Design and Optimization of Solar PV System for a Fish Farm in Pakistan. In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC); IEEE: Piscataway, NJ, USA, 2022; pp. 1076–1081. [Google Scholar] [CrossRef]
- Bayrak, G.; Lebeli, M. A PV based automation system for fish farms: An application study. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; IEEE: Piscataway, NJ, USA; pp. 1–23. [Google Scholar]
- Nguyen, N.T.; Matsuhashi, R.; Vo, T.T.B.C. A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry. Renew. Energy 2021, 163, 1878–1894. [Google Scholar] [CrossRef]
- Buakaew, S.; Jiamrittiwong, P.; Puangngernmak, N. The Electrical Energy Modeling of the Modular Off-Grid PV System for Aquaculture Application in the EEC Region. E3S Web Conf. 2021, 302, 01006. [Google Scholar] [CrossRef]
- Smith, B.; Dvorak, J.; Semmens, K.; Colliver, D. Using a computer-based selection model for sizing of solar panels and battery back-up systems for use in a floating in-pond raceway. Aquac. Eng. 2022, 97, 102238. [Google Scholar] [CrossRef]
- Jamroen, C.; Yonsiri, N.; Odthon, T.; Wisitthiwong, N.; Janreung, S. A standalone photovoltaic/battery energy-powered water quality monitoring system based on narrowband internet of things for aquaculture: Design and implementation. Smart Agric. Technol. 2023, 3, 100072. [Google Scholar] [CrossRef]
- Campana, P.E.; Wästhage, L.; Nookuea, W.; Tan, Y.; Yan, J. Optimization and assessment of floating and floating-tracking PV systems integrated in on-and off-grid hybrid energy systems. Sol. Energy 2019, 177, 782–795. [Google Scholar] [CrossRef]
- Eltawil, M.A.; ElSbaay, A.M. Utilisation of solar photovoltaic pumping for aeration systems in aquaculture ponds. Int. J. Sustain. Energy 2016, 35, 629–644. [Google Scholar] [CrossRef]
- Jamroen, C. Optimal techno-economic sizing of a standalone floating photovoltaic/battery energy storage system to power an aquaculture aeration and monitoring system. Sustain. Energy Technol. Assess. 2022, 50, 101862. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Gutierrez, J. Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands. Sustainability 2020, 12, 9556. [Google Scholar] [CrossRef]
- Tiwari, V.; Kumari, S.; Sahoo, P.P. PV Fed Solar Pump Designing for Fish Cultivation. In Recent Advances in Power System; Springer: Berlin/Heidelberg, Germany, 2022; pp. 127–138. [Google Scholar] [CrossRef]
- García Amaro, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Universidad Nacional Autónoma de Mexico: Mexico City, México, 2018; pp. 1–74. [Google Scholar]
- SMN (Servicio Meteorológico Nacional). Normales Climatológicas por Estado; SMN: Mondeville, France, 2020. [Google Scholar]
- INEGI (Instituto Nacional de Estadística y Geografía). Marco Geoestadístico 2014 Versión 6.2. 2014. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825004386 (accessed on 1 March 2021).
- CNA (Comisión Nacional del Agua), C. Atlas Digital del Agua; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, México, 2018; Available online: https://agua.org.mx/biblioteca/atlas-de-agua-en-mexico/ (accessed on 1 March 2021).
- Bergman, M. Advances in Mixed Methods Research, 1st ed.; SAGE Publications Ltd.: London, UK, 2008; 200p. [Google Scholar] [CrossRef]
- Hernández Sampieri, R.; Fernández Collado, C.; Baptista Lucio, P. Metodología de la Investigación, 6th ed.; McGraw-Hill: Santa Fe, México, 2010; 629p. [Google Scholar]
- Mertens, D.M. Research and Evaluation in Education and Psychology: Integrating Diversity with Quantitative, Qualitative, and Mixed Methods, 2nd ed.; SAGE Publications Ltd.: London, UK, 2005; 503p. [Google Scholar]
- Stake, R.E. Multiple Case Study Analysis; The Guilford Press: Nueva York, NY, USA, 2006. [Google Scholar]
- Albert, J.; Mills, G.D.; Elden, W. Bounding the case. Encyclopedia of Case Study Research; SAGE Publications Ltd.: London, UK, 2010. [Google Scholar]
- Bell, J. Doing Your Research Project, 5th ed.; McGraw-Hill/Open University Press: London, UK, 2010; 293p. [Google Scholar]
- Castellanos Hernández, T. Especificación Técnica para Sistemas Fotovoltaicos Conectados a la Red Eléctrica Asociados a Proyectos Productivos Agropecuarios FIRCO 15-V-2017, 1st ed.; FIRCO: Hermosillo, México, 2017; pp. 1–50. [Google Scholar]
- Alvarado Castañeda, R. Edwin Mauricio Martínez Galicia, Raúl Hernández Reséndiz, Edgar. Bracamontes Nájera. Manual para la Evaluación Técnica-Económica de “Sistemas Fotovoltaicos Interconectados a la Red apoyados a Través del Programa de Fideicomiso de Riesgo Compartido, 1st ed.; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Bonn, Germany, 2015; 106p, Available online: https://silo.tips/download/especificacion-tecnica-para-sistemas-fotovoltaicos-conectados-a-la-red-electrica (accessed on 1 March 2021).
- Canales Salinas, R.J. Criterios para la toma de decisión de Inversiones. Rev. Electrónica Investig. Cienc. Econ. 2015, 3, 101–117. Available online: https://revistacienciaseconomicas.unan.edu.ni/index.php/REICE/article/view/74 (accessed on 1 March 2021). [CrossRef] [Green Version]
- Cruz Arellano, M.; Castillo Tellez, M. Planteamiento de un modelo energético descriptivo aplicable a la instalación de sistemas solares fotovoltaicos interconectados a la red mediante generación distribuida: Caso de estudio en Nuevo Laredo. Proj. Des. Manag. 2021, 3, 112–137. [Google Scholar] [CrossRef]
- Minister of Natural Resources Canada. Clean Energy Project Analysis, RETScreen® Engineering & Cases Textbook, 3rd ed.; Natural Resources Canada: Ottawa, ON, Canada, 2005; Available online: https://publications.gc.ca/site/eng/9.690261/publication.html (accessed on 1 December 2022).
- Black, L.; Tarkin, A. Ingeniería Económica, 7th ed.; Mc Graw Hill: Santa Fe, México, 2012; 611p. [Google Scholar]
- Global Solar Atlas. Potencial Mundial de Energía Fotovoltaica por País. 2022. Available online: https://globalsolaratlas.info/global-pv-potential-study (accessed on 4 February 2022).
- Márquez- Rocha, F.J.; Jiménez Rodríguez, D.J.; Ruiz Rodríguez, C.J.; Ramos, S. Eficiencia energética en granjas acuicolas. Investig. Cient. Agrotecnol. Segur. Aliment. 2018, 4, 658–671. [Google Scholar]
- Teknosolar. Specify Panels JA Solar JAM72S09-390/PR 390Wp. 2021, 2 de abril de 2020. Available online: https://www.teknosolar.com/placa-solar-ja-solar-390w/ (accessed on 6 April 2022).
- Balato, M.; Costanzo, L.; Vitelli, M. Chapter 5—DMPPT PV System: Modeling and Control Techniques, en Advances in Renewable Energies and Power Technologies; Elsevier Inc.: London, UK, 2018; pp. 163–205. [Google Scholar] [CrossRef]
- Solar Technology. Solis Inverter 3P12K-4G. STI Solar Technology. 2021. Available online: https://www.solartechnology.com.mx/pdf/Inversores_de_red/Solis/Solis_4G_Three/solis_three_3P12KW_4G.pdf (accessed on 6 April 2022).
- Giiniong Technologies Co Ltd. Solis-3P12K-4G Solis 4g Three Fase Inverter Installation and Operation Manual (Ver.2.1). 2019. Available online: https://www.ginlong.com/4g_3p_inverter2/31652.html (accessed on 6 April 2022).
- Bill Brooks, P.E. Standardized Process for the Review of Small-Scale PV Systems, 2nd ed.; Solar America Board for Codes and Standards: Orlando, FL, USA, 2012; 80p. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banxico (Banco de Mexico). Sistema de Informacion Economica. Valores Gubernamentales (CF107). 2022. Available online: https://www.banxico.org.mx/SieInternet/consultarDirectorioInternetAction.do?accion=consultarCuadro&idCuadro=CF107§or=22&locale=es (accessed on 6 April 2022).
- Bridson, P.B.; Stoner, J.M.S.; Fransen, M.H.; Ireland, J. The aquaculture sustainability continuum—Defining an environmental performance framework. Environ. Sustain. Indic. 2020, 8, 100050. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Alleway, H.K.; Gillies, C.L.; Bishop, M.J.; Gentry, R.R.; Theuerkauf, S.J.; Jones, R. The Ecosystem Services of Marine Aquaculture: Valuing Benefits to People and Nature. BioScience 2018, 69, 59–68. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Gentry, R.R.; Rust, M.B.; Grimm, D.; Halpern, B.S. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World. PLoS ONE 2017, 12, e0169281. [Google Scholar] [CrossRef] [Green Version]
- Subasinghe, R.; Soto, D.; Jia, J. Global aquaculture and its role in sustainable development. Rev. Aquac. 2009, 1, 2–9. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Diana, J.S.; Egna, H.S.; Chopin, T.; Peterson, M.S.; Cao, L.; Pomeroy, R.; Verdegem, M.; Slack, W.T.; Bondad-Reantaso, M.G.; Cabello, F. Responsible Aquaculture in 2050: Valuing Local Conditions and Human Innovations Will Be Key to Success. BioScience 2013, 63, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- FIDEa (Fideicomiso para el Ahoro de Energia). Programa de Apoyo a la Generación Distribuida. 2020. Available online: https://www.fide.org.mx/?page_id=26060 (accessed on 12 March 2022).
- FIDEb. (Fideicomiso para el Ahorro de Energía Eléctrica). Generación Distribuida. 2022. Available online: https://www.fide.org.mx/?page_id=14720 (accessed on 8 March 2022).
- NAFIN (Nacional Financiera) Financiamiento CSOLAR. 2022. Available online: https://www.nafin.com/portalnf/content/financiamiento/csolar.html (accessed on 12 May 2022).
- FIRA (Fideicomisos Instituidos en Relación con la Agricultura) Programa de Apoyo a Proyectos Sostenibles. 2022. Available online: https://www.fira.gob.mx/Nd/prosostenible.jsp (accessed on 12 May 2022).
- FND (Financiera Nacional de Desarrollo Agropecuario, Rural, Forestal y Pesquero). Credito Refaccionario. 2022. Available online: https://www.gob.mx/fnd/acciones-y-programas/credito-refaccionario-29544 (accessed on 12 May 2022).
- CI Bank. CIPanel Solar. 2022. Available online: https://www.cibanco.com/es/cibanco/cipanel-solar-empresarial (accessed on 12 May 2022).
- BANORTE. Credito Agroactivio. BANORTE. 2022. Available online: https://bit.ly/3yuznLu (accessed on 12 May 2022).
- CPSR (Caja Popular San Rafael). Credito Paneles Solares. 2022. Available online: https://www.cajasanrafael.com.mx/Caja_San_Rafael/index.php/creditos/creditos-panales-solares (accessed on 12 May 2022).
- SEMARNAT (Secretaria del Medio Ambiente y Recursos Naturales). Guía de Programas de Fomento a la Generación de Energía con Recursos Renovables. 2015. Available online: https://www.gob.mx/cms/uploads/attachment/file/47854/Guia_de_programas_de_fomento.pdf (accessed on 18 March 2022).
Type of System | Country | Species | Indicators | Developed Application | Reference | ||
---|---|---|---|---|---|---|---|
Economic USD | Financial | Capacity | |||||
Off Grid-PV | Pakistan | NA | 15,158.09 ***** | 19,190.39 * | 24.7 kW | Aeration system and lights | [50] |
Off Grid-PV | Turkey | NA | NA | NA | 1.1 kWp | Automation system to stabilize the temperature of fish cage with water pump | [51] |
Hybrid system | Vietnam | Shrimp | 152,386 | NA | 998.65 kWp 999.09 kWr | Produce pure oxygen for oxygenation and all the energy of the farm | [52] |
Off Grid-PV | Thailand | Blue Swimming Crab | NA | NA | 374.2 Wp | Water pump and air compressor micro modular RAS t | [53] |
Off Grid-PV | E.E.U.U. | NA | NA | NA | ND | Modeled energy requirements using a daily energy for In-pond Raceway system (IPRs) | [54] |
Off Grid-PV | Thailand | NA | NA | 0.61 ** USD/kWh | 50 Wp | Water quality monitoring system | [55] |
Off Grid-PV | Thailand | Shrimp | 2350–2410 per kWp | 50 **** | 200 kWp | Energy system models for floating and floating-tracking PV systems | [56] |
Off Grid-PV | Egypt | NA | 260 | 0.219 *** kWh | 105 kWp | Solar photovoltaic (PV) pumping for aeration of aquaculture ponds | [57] |
Off Grid-PV | Thailand | Shrimp | 2225 | 0.16 ** USD/kWh | 985 Wp | Floating solar photovoltaic system to power aeration and monitoring system | [58] |
Off Grid-PV | Mexico | Nile Tilapia and Beta vulgaris | 25,000 | 46.993 * 0.438 ** USD/kWh | 12.5 kWp | Energy requirements for aquaponics system | [59] |
Off Grid-PV | India | NA | NA | NA | NA | Air pump and a water pump for water quality | [60] |
Equipment and Sources of Information | Description | Specifications |
---|---|---|
A non-participant observation guide and a survey. | Open-ended questions were used as field tools to develop the energy diagnosis. | Applicable to installed equipment, aeration, pumps and lighting. |
Technical data of panels. | With polycrystalline technology. | International Electrotechnical Commission (IEC) and UL 1703 certifications. |
Inverter technical data. | With grid-connected technology. | IEC 61727 and UL-1741 certifications. |
Fluke Multimeter. | For voltage and current measurements. | CAT III, 600V, VCA ± (1.0% + 3), VDC ± (0.5 % + 2). |
Solar radiation meter. | Amprobe Solar-100. | Range: 1999 W/m2; accuracy ± 5–10 W/m2; resolution 0.1W/m2 |
Fluke 434-II Power Quality Analyzer (ACE-Fluke 434-II). | For measurement of electrical power (W), voltage (V) and current (A) | Accuracy: Voltage: 0.5% of nominal voltage, Current: 0.5%, Power: 1%, Frequency: 0.01 Hz). |
Software. | Photovoltaic system calculation and economic, financial and environmental indicators. | Retscreen® Clean energy management expert software version 8 for Windows (ON, CA: Government of Canada). |
Software. | Single-line system diagram design. | Autocad SR, CA: (Autodesk, Inc, San Rafael, CA, USA). |
Software. | Descriptive statistics. | JAMOVI software version 2.3 (Jamovi.org). |
Electrical installation calculations. | [34,39,42,71,74] and Sunny Design Version 5.22.5 (Niestetal, DEU: SMA Solar Technology AG Corp, Rocklin, CA, USA). |
Month | Air Temperature | Relative Humidity | Precipitation | Daily-Horizontal Solar Radiation | Atmosphere Pressure | Wind Speed | Soil Temperature |
---|---|---|---|---|---|---|---|
Units | |||||||
°C | % | mm | kWh/m2/d | kPa | m/s | °C | |
January | 21.6 | 80.2 | 38.44 | 3.65 | 100.7 | 5.5 | 21.8 |
February | 22.3 | 79.8 | 26.60 | 4.23 | 100.6 | 5.4 | 22.9 |
March | 24.3 | 78.4 | 23.87 | 4.86 | 100.4 | 5.2 | 25.1 |
April | 26.2 | 77.4 | 36.0 | 5.35 | 100.2 | 5.1 | 27.6 |
May | 28 | 77.8 | 74.40 | 5.46 | 100.1 | 4.4 | 29.1 |
June | 28.3 | 80.2 | 231.20 | 5.07 | 100.1 | 4.2 | 28.4 |
July | 27.7 | 81.9 | 285.20 | 5.27 | 100.3 | 3.7 | 27.2 |
August | 27.6 | 82.4 | 282.72 | 5.05 | 100.3 | 3.5 | 27.2 |
September | 27.4 | 81.9 | 307.50 | 4.46 | 100.2 | 4.0 | 26.9 |
October | 26.2 | 80.2 | 161.20 | 4.29 | 100.3 | 4.6 | 25.6 |
November | 24.2 | 80.0 | 84.30 | 3.95 | 100.6 | 5.1 | 23.8 |
December | 22.3 | 79.8 | 38.13 | 3.55 | 100.7 | 5.1 | 22.2 |
Annual mean | 25.5 | 80.0 | 1586.66 | 4.60 | 100.4 | 4.6 | 25.6 |
Electrical Parameters AT STC (At Standard Test Condition) | Unit | |
---|---|---|
Rated Maximum Power (Pmax) | 390 | W |
Open Circuit Voltage (Voc) | 49.35 | V |
Maximum Power Voltage (Vmp) | 40.21 | V |
Short Circuit Current (Isc) | 10.22 | A |
Maximum Power Current (Imp) | 9.70 | A |
Module Efficiency | 19.5 | % |
Power Tolerance | 0~+5 | 0~+5 W |
Temperature Coefficient of Isc (α_Isc) | +0.060%/℃ | %/℃ |
Temperature Coefficient of Voc (β_Voc) | −0.300%/℃ | %/℃ |
Temperature Coefficient of Pmax (γ_Pmp) | −0.370%/℃ | %/℃ |
STC Irradiance 1000 W/m², cell temperature 25 ℃, AM1.5G |
Datasheet Solis-3P12K-4G inverter | ||
---|---|---|
Value | Unit | |
Input DC | ||
Recommended max. PV power | 18 | kW |
Max. input voltage | 1000 | V |
Rated voltage | 600 | V |
Start-up voltage | 180 | V |
MPPT voltage range | 160–850 | V |
Max. input current | 22/22 | A |
Max. short circuit current | 34.4/34.4 | A |
MPPT number/Max. input strings number | 2/4 | A2:B2 Inputs |
Output AC | ||
Rated output power | 12 | kW |
Max. apparent output power | 13.2 | kVA |
Max. output power | 13.2 | Kw |
Rated grid voltage | 3/N/PE, 20/380, 230/400 | V |
Rated grid frequency | 50/60 | Hz |
Rated grid output current | 18.2/17.3 | A |
Max. output current | 19.1 | A |
Power Factor | >0.99 (0.8 leading - 0.8 lagging | % |
THDi | <1.5 | % |
Max. efficiency | 98.7 | % |
Photovoltaic Generator: 56 Panels × Shanghai JA Solar Technology Co. Ltd. JAM72S03-390/PR (09/2018), Azimuth: 180°, Inclination: 17°, Mounting Type: Land | |||||
---|---|---|---|---|---|
System Size Generation: 22 kWp | Photovoltaic System Efficiency: 78% | PV Inverter Solis-3P12K-4G, 3-phase 220–380 Volts | |||
Average Consumption: 3275 kWh | Generation Average: 2429 kWh | Module power: 390 W | |||
Period | Year | Generation kW/h | kW/h base with On Grid-PV | Power Factor (%) | Payment with On Grid PV |
July | 2021 | 2761 | 439 | 28.09 | 241.75 |
June | 2021 | 2590 | 610 | 37.67 | 211.21 |
May | 2021 | 2713 | 487 | 30.88 | 230.36 |
April | 2021 | 2657 | 543 | 34.04 | 220.19 |
March | 2021 | 2655 | 545 | 34.15 | 219.88 |
February | 2021 | 2088 | 1112 | 59.55 | 225.48 |
January | 2021 | 2240 | 960 | 53.91 | 228.04 |
December | 2020 | 2065 | 1135 | 60.34 | 225.38 |
November | 2020 | 2400 | 800 | 47.06 | 235.67 |
October | 2020 | 2343 | 857 | 49.61 | 232.20 |
September | 2020 | 2378 | 822 | 48.06 | 234.21 |
August | 2020 | 2258 | 942 | 53.18 | 228.60 |
Period | Years | Without On Grid-PV | Payment with On Grid PV | Savings with On Grid PV |
---|---|---|---|---|
Totals | 1 | 5471.82 | 2733.03 | 2738.79 |
Team Description | Amount | Cost | USD |
---|---|---|---|
Photovoltaic Module JA Solar 390 W, 10-year direct product warranty. | 56 | 232.24 | 13,005.44 |
Solis-3P12K-4G 3 phase Inverter, Standard 5-Year Warranty with WiFi Monitoring. | 2 | 2503.27 | 5006.54 |
Mounting system: anodized aluminum structure, stainless steel hardware with expanding anchor. | Batch | 1912.56 | 1912.56 |
Mounting service: technical support, cable installation for AC and DC piping, photovoltaic modules, inverters and grounding | Batch | 3739.17 | 3739.17 |
CFE contracts (interconnection contract), delivery and start-up of the system, inspection of the installation by SENER and closing folder. | 1 | 3187.61 | 3187.61 |
Load center and electrical installation in distribution panel. | 1 | 865.20 | 865.20 |
Three-phase bi-directional meter at 220 Volts. | 1 | 1421.31 | 1421.31 |
Indirect field costs. | Batch | 924.78 | 924.78 |
Total | $30,062.61 |
Financial Parameters | Unit | Amount | |
---|---|---|---|
Inflation Rate | % | 3.24 | |
Project duration | Years | 15 | |
Debt Ratio | % | 70 | |
Debt interest rate | % | 8 | |
Debt duration | Years | 5 | |
Initial investment | USD | 30,062.61 | |
Annual costs and debt payments | |||
Annual costs | USD | −3664.96 | |
Debt payments/5 years | USD | 5269.17 | |
Total annual costs | USD | 1689.54 | |
Annual savings and income | |||
Annual savings | USD | 2738.79 | |
Income from greenhouse gas reduction | USD | NA | |
Financial viability | Investment acceptance criteria | ||
Internal Rate of Return IRR before taxes (capital) | % | 33.8 | Higher yield obtained with CETES (6.68%) |
Internal Rate of Return IRR before taxes (assets) | % | 13.5 | Higher yield obtained with CETES (6.68%) |
Return of capital | Year | 4.7 | Short investment payback period |
Capital repayment | Year | 5.1 | Short investment payback period |
Benefit–Cost Ratio (BCR) | USD | 5.6 | BCR > 1 |
Net Present Value (NPV) | USD | 41,517.44 | NPV > 0 and positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delfín-Portela, E.; Sandoval-Herazo, L.C.; Reyes-González, D.; Mata-Alejandro, H.; López-Méndez, M.C.; Fernández-Lambert, G.; Betanzo-Torres, E.A. Grid-Connected Solar Photovoltaic System for Nile Tilapia Farms in Southern Mexico: Techno-Economic and Environmental Evaluation. Appl. Sci. 2023, 13, 570. https://doi.org/10.3390/app13010570
Delfín-Portela E, Sandoval-Herazo LC, Reyes-González D, Mata-Alejandro H, López-Méndez MC, Fernández-Lambert G, Betanzo-Torres EA. Grid-Connected Solar Photovoltaic System for Nile Tilapia Farms in Southern Mexico: Techno-Economic and Environmental Evaluation. Applied Sciences. 2023; 13(1):570. https://doi.org/10.3390/app13010570
Chicago/Turabian StyleDelfín-Portela, Elizabeth, Luis Carlos Sandoval-Herazo, David Reyes-González, Humberto Mata-Alejandro, María Cristina López-Méndez, Gregorio Fernández-Lambert, and Erick Arturo Betanzo-Torres. 2023. "Grid-Connected Solar Photovoltaic System for Nile Tilapia Farms in Southern Mexico: Techno-Economic and Environmental Evaluation" Applied Sciences 13, no. 1: 570. https://doi.org/10.3390/app13010570
APA StyleDelfín-Portela, E., Sandoval-Herazo, L. C., Reyes-González, D., Mata-Alejandro, H., López-Méndez, M. C., Fernández-Lambert, G., & Betanzo-Torres, E. A. (2023). Grid-Connected Solar Photovoltaic System for Nile Tilapia Farms in Southern Mexico: Techno-Economic and Environmental Evaluation. Applied Sciences, 13(1), 570. https://doi.org/10.3390/app13010570