Detectability of Subsurface Defects in Polypropylene/Glass Fiber Composites Using Multiple Lock-In Frequency Modulated Algorithms
Abstract
:1. Introduction
2. Theory
2.1. Lock-In Frequency Modulated Thermal Wave Imaging
2.2. Fast Fourier Transform (FFT)
2.3. Harmonic Approximation (HA)
3. Methods and Sample
3.1. Test Sample
3.2. Experimental Procedures
4. Results and Discussion
4.1. Defect Detection
4.2. Phase Contrast Trends
4.3. Signal-to-Noise Trends
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kutz, M. Mechanical Engineers’ Handbook, Volume 1: Materials and Engineering Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Senthilkumar, M.; Sreekanth, T.G.; Manikanta Reddy, S. Nondestructive Health Monitoring Techniques for Composite Materials: A Review. Polym. Polym. Compos. 2021, 29, 528–540. [Google Scholar] [CrossRef]
- Koniuszewska, A.G.; Kaczmar, J.W. Application of Polymer Based Composite Materials in Transportation. Prog. Rubber Plast. Recycl. Technol. 2016, 32, 1–24. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Structural Health Monitoring of Aerospace Composites; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Tromaras, A.; Kappatos, V. Exploring Step-Heating and Lock-in Thermography NDT using One-Sided Inspection on Low-Emissivity Composite Structures for New Rail Carbodies. Sensors 2022, 22, 8195. [Google Scholar] [CrossRef] [PubMed]
- Montanini, R.; Freni, F. Non-Destructive Evaluation of Thick Glass Fiber-Reinforced Composites by Means of Optically Excited Lock-in Thermography. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2075–2082. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Gholizadeh, S. Impact Behaviours and Non-Destructive Testing (NDT) Methods in Carbon Fiber Composites in Aerospace Industry: A Review. Authorea Prepr. 2022, 1–33. [Google Scholar] [CrossRef]
- Khattak, M.A.; Mukhtar, A.; Shahid, I.S.; Sufian, M. A Review on Application of Non Destructive Techniques on Composites. J. Adv. Res. Appl. Mech. 2016, 20, 12–21. [Google Scholar]
- Yan, Y.J.; Cheng, L.; Wu, Z.Y.; Yam, L.H. Development in Vibration-Based Structural Damage Detection Technique. Mech. Syst. Signal Process. 2007, 21, 2198–2211. [Google Scholar] [CrossRef]
- Prade, F.; Schaff, F.; Senck, S.; Meyer, P.; Mohr, J.; Kastner, J.; Pfeiffer, F. Nondestructive Characterization of Fiber Orientation in Short Fiber Reinforced Polymer Composites with X-Ray Vector Radiography. NDT E Int. 2017, 86, 65–72. [Google Scholar] [CrossRef]
- Miah, S.; Miah, M.H.; Hossain, M.S.; Ahsan, M.H. Study of the Homogeneity of Glass Fiber Reinforced Polymer Composite by using Neutron Radiography. Am. J. Constr. Build. Mater. 2018, 2, 22–28. [Google Scholar]
- Boller, C.; Staszewski, W.J. Aircraft Structural Health and Usage Monitoring. In Health Monitoring of Aerospace Structures; Wiley: New York, NY, USA, 2004; pp. 29–73. [Google Scholar]
- Masmoudi, S.; El Mahi, A.; Turki, S. Fatigue Behaviour and Structural Health Monitoring by Acoustic Emission of E-Glass/Epoxy Laminates with Piezoelectric Implant. Appl. Acoust. 2016, 108, 50–58. [Google Scholar] [CrossRef]
- Chung, Y.; Lee, S.; Kim, W. Latest Advances in Common Signal Processing of Pulsed Thermography for Enhanced Detectability: A Review. Appl. Sci. 2021, 11, 12168. [Google Scholar] [CrossRef]
- Yang, R.; He, Y. Optically and Non-Optically Excited Thermography for Composites: A Review. Infrared Phys. Technol. 2016, 75, 26–50. [Google Scholar] [CrossRef]
- Osornio-Rios, R.A.; Antonino-Daviu, J.A.; de Jesus Romero-Troncoso, R. Recent Industrial Applications of Infrared Thermography: A Review. IEEE Trans. Ind. Inform. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- Maldague, X.P. Nondestructive Evaluation of Materials by Infrared Thermography; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Vollmer, M. Infrared thermal imaging. In Computer Vision: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2021; pp. 666–670. [Google Scholar]
- Garrido, I.; Lagüela, S.; Otero, R.; Arias, P. Thermographic Methodologies used in Infrastructure Inspection: A review—Post-Processing Procedures. Appl. Energy 2020, 266, 114857. [Google Scholar] [CrossRef]
- Meola, C. Infrared Thermography Recent Advances and Future Trends; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012. [Google Scholar]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef] [Green Version]
- D’Accardi, E.; Palumbo, D.; Galietti, U. A Comparison among Different Ways to Investigate Composite Materials with Lock-in Thermography: The Multi-Frequency Approach. Materials 2021, 14, 2525. [Google Scholar] [CrossRef]
- Pickering, S.; Almond, D. Matched Excitation Energy Comparison of the Pulse and Lock-in Thermography NDE Techniques. NDT E Int. 2008, 41, 501–509. [Google Scholar] [CrossRef]
- Chatterjee, K.; Tuli, S.; Pickering, S.G.; Almond, D.P. A Comparison of the Pulsed, Lock-in and Frequency Modulated Thermography Nondestructive Evaluation Techniques. NDT E Int. 2011, 44, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, D. On the Thickness Quantification of Composite Materials by using Lock-in Thermography. Materials 2019, 12, 1185. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, D.; Tamborrino, R.; Galietti, U.; Aversa, P.; Tatì, A.; Luprano, V. Ultrasonic Analysis and Lock-in Thermography for Debonding Evaluation of Composite Adhesive Joints. NDT E Int. 2016, 78, 1–9. [Google Scholar] [CrossRef]
- Banerjee, D.; Chattopadhyay, S.; Chatterjee, K.; Tuli, S.; Jain, N.; Goyal, I.; Mukhopadhyay, S. Non-Destructive Testing of Jute–polypropylene Composite using Frequency-Modulated Thermal Wave Imaging. J. Thermoplast. Compos. Mater. 2015, 28, 548–557. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Zhu, J.; Ming, A.; Zhang, W.; Zhang, J. Investigation on the Damage Evolution in the Impacted Composite Material Based on Active Infrared Thermography. NDT E Int. Indep. Nondestruct. Test. Eval. 2016, 83, 114–122. [Google Scholar] [CrossRef]
- Khomenko, A.; Karpenko, O.; Koricho, E.; Haq, M.; Cloud, G.L.; Udpa, L. Theory and Validation of Optical Transmission Scanning for Quantitative NDE of Impact Damage in GFRP Composites. Compos. Part B Eng. 2016, 107, 182–191. [Google Scholar] [CrossRef]
- Santulli, C. IR Thermography Study of the Effect of Moulding Parameters on Impact Resistance in E-Glass/Polypropylene Commingled Laminates. NDT E Int. 2002, 35, 377. [Google Scholar] [CrossRef]
- Meola, C.; Boccardi, S.; Carlomagno, G.M.; Boffa, N.D.; Ricci, F.; Simeoli, G.; Russo, P. Impact Damaging of Composites through Online Monitoring and Non-Destructive Evaluation with Infrared Thermography. NDT E Int. Indep. Nondestruct. Test. Eval. 2017, 85, 34–42. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Infrared Thermography to Evaluate Impact Damage in Glass/Epoxy with Manufacturing Defects. Int. J. Impact Eng. 2014, 67, 1–11. [Google Scholar] [CrossRef]
- Fedala, Y.; Streza, M.; Sepulveda, F.; Roger, J.; Tessier, G.; Boué, C. Infrared Lock-in Thermography Crack Localization on Metallic Surfaces for Industrial Diagnosis. J. Nondestr. Eval. 2014, 33, 335–341. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Recent Advances in the use of Infrared Thermography. Meas. Sci. Technol. 2004, 15, R27. [Google Scholar] [CrossRef]
- Chung, Y.; Shrestha, R.; Lee, S.; Kim, W. Binarization Mechanism Evaluation for Water Ingress Detectability in Honeycomb Sandwich Structure using Lock-in Thermography. Materials 2022, 15, 2333. [Google Scholar] [CrossRef]
- Lee, S.; Chung, Y.; Kim, C.; Shrestha, R.; Kim, W. Thermographic Inspection of CLP Defects on the Subsurface Based on Binary Image. Int. J. Precis. Eng. Manuf. 2022, 23, 269–279. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W.; Dai, J. Research on Thermal Wave Processing of Lock-in Thermography Based on Analyzing Image Sequences for NDT. Infrared Phys. Technol. 2010, 53, 348–357. [Google Scholar] [CrossRef]
- Ibarra-Castanedo, C.; Maldague, X. Pulsed Phase Thermography Reviewed. Quant. Infrared Thermogr. J. 2004, 1, 47–70. [Google Scholar] [CrossRef]
- Olbrycht, R.; Więcek, B.; Gralewicz, G.; Świątczak, T.; Owczarek, G. Comparison of Fourier and Wavelet Analyses for Defect Detection in Lock-in and Pulse Phase Thermography. Quant. InfraRed Thermogr. J. 2007, 4, 219–232. [Google Scholar] [CrossRef]
- Chrysafi, A.P.; Athanasopoulos, N.; Siakavellas, N.J. Damage Detection on Composite Materials with Active Thermography and Digital Image Processing. Int. J. Therm. Sci. 2017, 116, 242–253. [Google Scholar] [CrossRef]
- Chung, Y.; Shrestha, R.; Lee, S.; Kim, W. Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography. Sensors 2020, 20, 6015. [Google Scholar] [CrossRef]
- Shrestha, R.; Choi, M.; Kim, W. Thermographic Inspection of Water Ingress in Composite Honeycomb Sandwich Structure: A Quantitative Comparison among Lock-in Thermography Algorithms. Quant. InfraRed Thermogr. J. 2021, 18, 92–107. [Google Scholar] [CrossRef]
- Busse, G.; Gleiter, A.; Spiessberger, C. NDE using Lockin-Thermography: Principle and Recent Developments. In Nondestructive Testing of Materials and Structures; Springer: Dordrecht, The Netherlands, 2013; pp. 627–632. [Google Scholar]
- Shrestha, R.; Park, J.; Kim, W. Application of Thermal Wave Imaging and Phase Shifting Method for Defect Detection in Stainless Steel. Infrared Phys. Technol. 2016, 76, 676–683. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Non-Destructive Testing and Evaluation of Materials using Active Thermography and Enhancement of Signal to Noise Ratio through Data Fusion. Infrared Phys. Technol. 2018, 94, 78–84. [Google Scholar] [CrossRef]
Defect ID. | Geometric Value (mm) | |||
---|---|---|---|---|
Group | No. | Length | Width | Depth |
1 | 1 | 5 | 2 | 0.2 |
2 | 24 | 4 | 0.6 | |
3 | 43 | 6 | 1 | |
4 | 62 | 8 | 1.4 | |
5 | 81 | 10 | 1.8 | |
6 | 100 | 12 | 2.2 | |
2 | 1 | 5 | 2 | 1.8 |
2 | 24 | |||
3 | 43 | |||
4 | 62 | |||
5 | 81 | |||
6 | 100 | |||
3 | 1 | 100 | 2 | 1.8 |
2 | 4 | |||
3 | 6 | |||
4 | 8 | |||
5 | 10 | |||
6 | 12 | |||
4 | 1 | 100 | 2 | 0.2 |
2 | 0.6 | |||
3 | 1 | |||
4 | 1.4 | |||
5 | 1.8 | |||
6 | 2.2 |
Frequency (Hz) | Frame/ Cycle | Frame Interval | Frame Considered | |||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | |||
1 | 60 | 15 | 75 | 90 | 105 | 120 |
0.2 | 300 | 75 | 375 | 450 | 525 | 600 |
0.1 | 600 | 150 | 750 | 900 | 1050 | 1200 |
0.05 | 1200 | 300 | 1500 | 1800 | 2100 | 2400 |
0.03 | 2000 | 500 | 2500 | 3000 | 3500 | 4000 |
0.01 | 6000 | 1500 | 7500 | 9000 | 10,500 | 12,000 |
Modulation Frequency (Hz) | Period (s) | Frame Rate (Hz) | Excitation Cycles (no.) | Total Frames (no.) | Frames Investigated (no.) |
---|---|---|---|---|---|
1 | 1 | 60 | 3 | 180 | 60 |
0.2 | 5 | 900 | 300 | ||
0.1 | 10 | 1800 | 600 | ||
0.05 | 20 | 3600 | 1200 | ||
0.03 | 33.33 | 6000 | 2000 | ||
0.01 | 100 | 18,000 | 6000 |
Defect Id. | Geometric Information (mm) | Phase Contrast |ΔC| (Radian) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HA | PPT | ||||||||||||||
Length | Width | Depth | 1 Hz | 0.2 Hz | 0.1 Hz | 0.05 Hz | 0.03 Hz | 0.01 Hz | 1 Hz | 0.2 Hz | 0.1 Hz | 0.05 Hz | 0.03 Hz | 0.01 Hz | |
A1 | 5 | 2 | 0.2 | - | - | - | - | - | - | - | - | - | - | - | - |
A2 | 24 | 4 | 0.6 | - | - | - | - | - | - | - | - | - | - | - | - |
A3 | 43 | 6 | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
A4 | 62 | 8 | 1.4 | - | 0.1187 | 0.2852 | 0.2889 | 0.0385 | 0.0016 | - | 0.0567 | 0.1106 | 0.1549 | 0.2137 | 0.1004 |
A5 | 81 | 10 | 1.8 | - | 0.0954 | 0.2879 | 0.6089 | 0.2502 | 0.0985 | - | 0.1578 | 0.2544 | 0.5225 | 0.3111 | 0.1212 |
A6 | 100 | 12 | 2.2 | - | 0.3558 | 0.7658 | 0.8794 | 0.1485 | 0.1547 | - | 0.4004 | 0.3624 | 0.6208 | 0.3335 | 0.3061 |
B1 | 5 | 2 | 1.8 | - | 0.1484 | 0.1751 | 0.0152 | 0.0850 | 0.1051 | - | 0.0651 | 0.0904 | 0.1625 | 0.0365 | 0.0986 |
B2 | 24 | - | 0.07502 | 0.1178 | 0.2281 | 0.1281 | 0.0879 | - | 0.0501 | 0.0657 | 0.1604 | 0.0875 | 0.0658 | ||
B3 | 43 | - | 0.0785 | 0.1279 | 0.2285 | 0.1201 | 0.9897 | - | 0.0525 | 0.0778 | 0.1602 | 0.0875 | 0.0640 | ||
B4 | 62 | - | 0.0804 | 0.1178 | 0.2185 | 0.1586 | 0.0898 | - | 0.0478 | 0.0652 | 0.1778 | 0.0880 | 0.0780 | ||
B5 | 81 | - | 0.1936 | 0.1839 | 0.2287 | 0.1158 | 0.0825 | - | 0.0404 | 0.0754 | 0.1898 | 0.0970 | 0.0778 | ||
B6 | 100 | - | 0.1578 | 0.1786 | 0.2205 | 0.1558 | 0.1802 | - | 0.0500 | 0.0983 | 0.1882 | 0.0972 | 0.0945 | ||
C1 | 100 | 2 | 1.8 | - | 0.1385 | 0.1848 | 0.2275 | 0.1952 | 0.1878 | - | 0.0458 | 0.0547 | 0.1822 | 0.8410 | 0.9214 |
C2 | 4 | - | 0.1353 | 0.1578 | 0.2618 | 0.2475 | 0.1915 | - | 0.0665 | 0.0875 | 0.2051 | 0.0748 | 0.0921 | ||
C3 | 6 | - | 0.1438 | 0.2175 | 0.3714 | 0.2956 | 0.1952 | - | 0.0947 | 0.1963 | 0.1851 | 0.0885 | 0.0785 | ||
C4 | 8 | - | 0.1431 | 0.2870 | 0.3748 | 0.2652 | 0.1889 | - | 0.9664 | 0.2520 | 0.3251 | 0.1954 | 0.1351 | ||
C5 | 10 | - | 0.1514 | 0.3187 | 0.4372 | 0.3025 | 0.1774 | - | 0.1686 | 0.2587 | 0.2247 | 0.1987 | 0.1425 | ||
C6 | 12 | - | 0.1573 | 0.3412 | 0.4702 | 0.4027 | 0.1702 | - | 0.1750 | 0.2305 | 0.2430 | 0.1741 | 0.1451 | ||
D1 | 100 | 2 | 0.2 | - | - | - | 0.0125 | 0.0105 | 0.0034 | - | - | - | - | - | 0.0088 |
D2 | 0.6 | - | - | - | 0.0145 | 0.0154 | 0.0066 | - | - | - | - | 0.0055 | 0.0014 | ||
D3 | 1 | - | - | - | 0.0420 | 0.0450 | 0.0070 | - | - | - | 0.0090 | 0.0091 | 0.016 | ||
D4 | 1.4 | - | - | 0.0456 | 0.0956 | 0.1368 | 0.041 | - | 0.0105 | 0.0156 | 0.0368 | 0.0806 | 0.0347 | ||
D5 | 1.8 | - | 0.1256 | 0.1912 | 0.2469 | 0.2400 | 0.1808 | - | 0.0554 | 0.0705 | 0.0944 | 0.0930 | 0.0896 | ||
D6 | 2.2 | - | 0.2654 | 0.2556 | 0.2202 | 0.1601 | 0.1934 | - | 0.0889 | 0.1584 | 0.1256 | 0.0746 | 0.1521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.; Lee, S.; Shrestha, R.; Kim, W. Detectability of Subsurface Defects in Polypropylene/Glass Fiber Composites Using Multiple Lock-In Frequency Modulated Algorithms. Appl. Sci. 2023, 13, 545. https://doi.org/10.3390/app13010545
Chung Y, Lee S, Shrestha R, Kim W. Detectability of Subsurface Defects in Polypropylene/Glass Fiber Composites Using Multiple Lock-In Frequency Modulated Algorithms. Applied Sciences. 2023; 13(1):545. https://doi.org/10.3390/app13010545
Chicago/Turabian StyleChung, Yoonjae, Seungju Lee, Ranjit Shrestha, and Wontae Kim. 2023. "Detectability of Subsurface Defects in Polypropylene/Glass Fiber Composites Using Multiple Lock-In Frequency Modulated Algorithms" Applied Sciences 13, no. 1: 545. https://doi.org/10.3390/app13010545
APA StyleChung, Y., Lee, S., Shrestha, R., & Kim, W. (2023). Detectability of Subsurface Defects in Polypropylene/Glass Fiber Composites Using Multiple Lock-In Frequency Modulated Algorithms. Applied Sciences, 13(1), 545. https://doi.org/10.3390/app13010545