Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data
Abstract
:1. Introduction
- The extraction of trunks relies on more regular geometric features and is less accurate if parts of the trunk are bent or heavily obscured;
- The results of canopy extraction depend to a large extent on the position of the trunk, which cannot be extracted when the trunk is heavily obscured;
- When there is a large gap between the canopy and trunk or between the canopy and crown, it is not possible to apply the regional growth algorithm to extract the canopy layer;
- The informatization of tree geometric parameters is the key to forestry surveys and 3D applications, and there is a lack of methods for the fine-grained analysis of tree parameters.
2. Materials and Methods
2.1. Technical Process
2.2. Non-Tree Points Filtering Pre-Processing
2.3. Regional Growth Algorithm for Gaussian Distribution (GDRG) to Extract Trunks
2.4. Single Tree Segmentation Method with Voronoi Range Constraint
2.4.1. Canopy Group Extraction
2.4.2. Pseudo-trunk Identification
2.4.3. Single Tree Segmentation Method with Voronoi Range Constraint
2.5. Calculation of Tree Geometry Parameters
3. Results
3.1. Data Sources and Threshold Parameters
3.2. Experimental Results
4. Discussion
4.1. Comparative Analysis
4.2. Causes of Tree Errors and Missing Extractions
4.3. Comparative Advantages of Our Extraction Method
4.4. Error Analysis of Tree Parameter Extraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giorgi, L.; Bruno, G.; Nijhof, J.; Urban, P.J.; Vall-Llosera, G.; Ponzini, F.; Ladvánszky, J. Subcarrier multiplexing RF plans for analog radio over fiber in heterogeneous networks. J. Light. Technol. 2016, 34, 3859–3866. [Google Scholar] [CrossRef]
- Nagy, B.; Benedek, C. 3D CNN-based semantic labeling approach for mobile laser scanning data. IEEE Sens. J. 2019, 19, 10034–10045. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, F.; Yang, B.; Zhang, W. Autonomous vehicle localization with prior visual point cloud map constraints in GNSS-challenged environments. Remote Sens. 2021, 13, 506. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, B.; Chen, J.; Liu, C.; Zhan, K.; Sui, X.; Xue, Y.; Li, J. Research on lidar point cloud segmentation and collision detection algorithm. In Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20–22 December 2019; IEEE: New York, NY, USA, 2019; pp. 475–479. [Google Scholar]
- Yin, D.; Zhang, Q.; Liu, J.; Liang, X.; Wang, Y.; Chen, S.; Maanpää, J. Interest point detection from multi-beam light detection and ranging point cloud using unsupervised convolutional neural network. IET Image Process. 2020, 15, 369–377. [Google Scholar] [CrossRef]
- Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P. Underwater 3D modeling: Image enhancement and point cloud filtering. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B2, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Ji, F.; Xue, J. Cutting Plane Based Cylinder Fitting Method With Incomplete Point Cloud Data for Digital Fringe Projection. IEEE Access 2020, 8, 149385–149401. [Google Scholar] [CrossRef]
- Tachella, J.; Altmann, Y.; Mellado, N.; McCarthy, A.; Tobin, R.; Buller, G.S.; Tourneret, J.; McLaughlin, S. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 2019, 10, 4984. [Google Scholar] [CrossRef] [Green Version]
- Tachella, J.; Altmann, Y.; Ren, X.; McCarthy, A.; Buller, G.S.; Mclaughlin, S.; Tourneret, J.Y. Bayesian 3D reconstruction of complex scenes from single-photon lidar data. SIAM J. Imaging Sci. 2019, 12, 521–550. [Google Scholar] [CrossRef] [Green Version]
- Mi, X.; Yang, B.; Dong, Z.; Chen, C.; Gu, J. Automated 3D Road Boundary Extraction and Vectorization Using MLS Point Clouds. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5287–5297. [Google Scholar] [CrossRef]
- Zai, D.; Li, J.; Guo, Y.; Cheng, M.; Lin, Y.; Luo, H.; Wang, C. 3-D road boundary extraction from mobile laser scanning data via supervoxels and graph cuts. IEEE Trans. Intell. Transp. Syst. 2017, 19, 802–813. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Yu, X. The Use of a Mobile Laser Scanning System for Mapping Large Forest Plots. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1504–1508. [Google Scholar] [CrossRef]
- Liang, X.; Litkey, P.; Hyyppa, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2011, 50, 661–670. [Google Scholar] [CrossRef]
- Cabo, C.; Ordoñez, C.; García-Cortés, S.; Martínez, J. An algorithm for automatic detection of pole-like street furniture objects from Mobile Laser Scanner point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 87, 47–56. [Google Scholar] [CrossRef]
- Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Kukko, A.; Kaartinen, H. Performance analysis of a pole and tree trunk detection method for mobile laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Y.; Li, D. A method based on an adaptive radius cylinder model for detecting pole-like objects in mobile laser scanning data. Remote Sens. Lett. 2016, 7, 249–258. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Akerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Comprehensive quantitative tree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef] [Green Version]
- Hackenberg, J.; Morhart, C.; Sheppard, J.; Spiecker, H.; Disney, M. Highly accurate tree models derived from terrestrial laser scan data: A method description. Forests 2014, 5, 1069–1105. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Oude Elberink, S.; Vosselman, G. Pole-like road furniture detection and decomposition in mobile laser scanning data based on spatial relations. Remote Sens. 2018, 10, 531. [Google Scholar] [CrossRef]
- Arachchige, N.H.; Perera, S.N.; Maas, H.G. Automatic processing of mobile laser scanner point clouds for building facade detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, Q.; Wu, M.; Liu, J.; Wu, X. Extraction and simplification of building façade pieces from mobile laser scanner point clouds for 3D street view services. ISPRS Int. J. Geo-Inf. 2016, 5, 231. [Google Scholar] [CrossRef] [Green Version]
- Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Kukko, A.; Kaartinen, H. Detection of vertical pole-like objects in a road environment using vehicle-based laser scanning data. Remote Sens. 2010, 2, 641–664. [Google Scholar] [CrossRef] [Green Version]
- Hetti Arachchige, N. Automatic tree stem detection—A geometric feature based approach for MLS point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Wang, C.; Pan, F.; Xi, X.; Zeng, H.; Liu, H. Detecting stems in dense and homogeneous forest using single-scan TLS. Forests 2015, 6, 3923–3945. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Wang, Y.; Li, Y.; Shi, Z.; Zhao, M.; Liang, W. Hierarchical extraction of pole-like objects from scene point clouds. Opt. Eng. 2018, 57, 083106. [Google Scholar] [CrossRef]
- Wu, B.; Yu, B.; Yue, W.; Shu, S.; Tan, W.; Hu, C.; Huang, Y.; Wu, J.; Liu, H. A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sens. 2013, 5, 584–611. [Google Scholar] [CrossRef] [Green Version]
- Thanh Ha, T.; Chaisomphob, T. Automated localization and classification of expressway pole-like road facilities from mobile laser scanning data. Adv. Civ. Eng. 2020, 2020, 5016783. [Google Scholar] [CrossRef]
- Tang, Y.; Xiang, Z.; Jiang, T. Semantic classification of pole-like traffic facilities in complex road scenes based on LiDAR point cloud. Trop. Geogr. 2020, 40, 893–902. [Google Scholar]
- Hui, Z.; Li, Z.; Jin, S.; Liu, B.; Li, D. Street tree extraction and segmentation from mobile LiDAR point clouds based on spatial geometric features of object primitives. Forests 2022, 13, 1245. [Google Scholar] [CrossRef]
- Pu, S.; Rutzinger, M.; Vosselman, G.; Elberink, S.O. Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS J. Photogramm. Remote Sens. 2011, 66, S28–S39. [Google Scholar] [CrossRef]
- Fan, W.; Chenglu, W.; Jonathan, L. Automated extraction of urban trees from mobile LiDAR point clouds[C]//2nd ISPRS international conference on computer vision in remote sensing (CVRS 2015). SPIE 2016, 9901, 159–164. [Google Scholar]
- Li, F.; Elberink, S.O.; Vosselman, G. Pole-like street furniture decompostion in mobile laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Luo, H.; Li, P.; Cheng, M.; Wen, C.; Li, J. Object detection in terrestrial laser scanning point clouds based on Hough forest. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1807–1811. [Google Scholar] [CrossRef]
- Huang, P.; Chen, Y.; Li, J.; Yu, Y.; Wang, C.; Nie, H. Extraction of street trees from mobile laser scanning point clouds based on subdivided dimensional features. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: New York, NY, USA, 2015; pp. 557–560. [Google Scholar]
- Huang, J.; You, S. Pole-like object detection and classification from urban point clouds. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: New York, NY, USA, 2015; pp. 3032–3038. [Google Scholar]
- Wu, F.; Wen, C.; Guo, Y.; Wang, J.; Yu, Y.; Wang, C.; Li, J. Rapid localization and extraction of street light poles in mobile LiDAR point clouds: A supervoxel-based approach. IEEE Trans. Intell. Transp. Syst. 2016, 18, 292–305. [Google Scholar] [CrossRef]
- Huang, J.; You, S. Point cloud labeling using 3rd convolutional neural network. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 2670–2675. [Google Scholar]
- Weinmann, M.; Weinmann, M.; Mallet, C.; Brédif, M. A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas. Remote Sens. 2017, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Xu, S.; Ye, N.; Zhu, F. Automatic extraction of street trees’ nonphotosynthetic components from MLS data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 64–77. [Google Scholar] [CrossRef]
- Yadav, M.; Khan, P.; Singh, A.K.; Lohani, B. Generating GIS database of street trees using mobile LiDAR data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Ye, N.; Xu, S.; Zhu, F. A supervoxel approach to the segmentation of individual trees from LiDAR point clouds. Remote Sens. Lett. 2018, 9, 515–523. [Google Scholar] [CrossRef]
- Yue, G.; Liu, R.; Zhang, H.; Zhou, M. A method for extracting street trees from mobile LiDAR point clouds. Open Cybern. Syst. J. 2015, 9, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, D.; Zhu, H.; Li, Y. A dual growing method for the automatic extraction of individual trees from mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2016, 120, 37–52. [Google Scholar] [CrossRef]
- Bremer, M. Eigenvalue and graph-based object extraction from mobile laser scanning point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 8, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kang, Z.; Akwensi, P.H. A skeleton-based hierarchical method for detecting 3-D pole-like objects from mobile LiDAR point clouds. IEEE Geosci. Remote Sens. Lett. 2018, 16, 801–805. [Google Scholar] [CrossRef]
- Zhong, L.; Cheng, L.; Xu, H.; Wu, Y.; Chen, Y.; Li, M. Segmentation of individual trees from TLS and MLS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 774–787. [Google Scholar] [CrossRef]
- Kang, Z.; Yang, J.; Zhong, R.; Wu, Y.; Shi, Z.; Lindenbergh, R. Voxel-based extraction and classification of 3-D pole-like objects from mobile LiDAR point cloud data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4287–4298. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Dong, Y.; Fan, H. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud. Acta Geod. Cartogr. Sin. 2020, 49, 724–735. (In Chinese) [Google Scholar]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. ACM SIGGRAPH Comput. Graph. 1992, 26, 71–78. [Google Scholar] [CrossRef]
- Neuville, R.; Bates, J.; Jonard, F. Estimating Forest Structure from UAV-Mounted LiDAR Point Cloud Using Machine Learning. Remote. Sens. 2021, 13, 352. [Google Scholar] [CrossRef]
|
Study Area | Area Coverage (m2) | Average Point Density (Point/m2) | Scanning Points (Point) |
---|---|---|---|
120 × 40 | ~500 | 2,416,962 | |
100 × 45 | ~700 | 3,482,385 | |
70 × 35 | ~900 | 2,252,170 |
Parameter | Unit | Numerical Values |
---|---|---|
Euclidean clustering distance threshold | m | 0.6 |
— | 0.8 | |
Confidence | — | 0.05 |
volume | m | 10 |
Height difference | m | 1.5 |
Groundedness | m | 1.5 |
Study Area | TP | FP | FN | Pre | Rec | F1-Score |
---|---|---|---|---|---|---|
82 | 3 | 10 | 96.47% | 89.13% | 92.65% | |
70 | 3 | 2 | 95.89% | 97.22% | 96.55% | |
39 | 3 | 11 | 92.85% | 78.00% | 84.78% |
Study Area | Method | Pre | Rec | F1-Score |
---|---|---|---|---|
Hui [32] | 90.00% | 88.04% | 89.01% | |
Ours | 96.47% | 89.13% | 92.65% | |
Hui [32] | 75.27% | 97.22% | 84.85% | |
Ours | 95.89% | 97.22% | 96.55% | |
Hui [32] | 61.29% | 76.00% | 67.86% | |
Ours | 92.85% | 78.00% | 84.78% |
Study Area | ID | X (m) | Y (m) | Tree Height (m) | Canopy Crown Width (m) | Breast Dimension (m) | Trunk Height (m) |
---|---|---|---|---|---|---|---|
1 | 431,863.346 | 3,895,619.663 | 6.372 | 4.644 | 0.499 | 2.803 | |
10 | 431,869.902 | 3,895,570.139 | 6.106 | 3.657 | 0.281 | 3.014 | |
20 | 431,883.642 | 3,895,471.374 | 6.579 | 4.634 | 0.324 | 2.504 | |
1 | 431,954.597 | 3,895,631.619 | 5.806 | 4.344 | 0.534 | 2.382 | |
10 | 431,957.175 | 3,895,612.356 | 5.661 | 4.022 | 0.626 | 2.175 | |
20 | 431,970.350 | 3,895,519.941 | 6.693 | 6.080 | 0.706 | 2.782 | |
1 | 431,925.301 | 3,895,408.774 | 13.851 | 9.336 | 1.027 | 2.555 | |
10 | 431,998.686 | 3,895,434.145 | 12.419 | 11.764 | 0.768 | 2.444 | |
20 | 431,942.074 | 3,895,419.157 | 10.754 | 11.724 | 1.246 | 2.561 |
Study Area | Standard Deviation of Position (m) |
---|---|
0.0337 | |
0.1481 | |
2.378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lin, Y.; Cai, H.; Li, S. Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data. Appl. Sci. 2023, 13, 276. https://doi.org/10.3390/app13010276
Wang Y, Lin Y, Cai H, Li S. Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data. Applied Sciences. 2023; 13(1):276. https://doi.org/10.3390/app13010276
Chicago/Turabian StyleWang, Yanjun, Yunhao Lin, Hengfan Cai, and Shaochun Li. 2023. "Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data" Applied Sciences 13, no. 1: 276. https://doi.org/10.3390/app13010276
APA StyleWang, Y., Lin, Y., Cai, H., & Li, S. (2023). Hierarchical Fine Extraction Method of Street Tree Information from Mobile LiDAR Point Cloud Data. Applied Sciences, 13(1), 276. https://doi.org/10.3390/app13010276