Analysis of the Seismic Properties for Engineering Purposes of the Shallow Subsurface: Two Case Studies from Italy and Croatia
Abstract
:Featured Application
Abstract
1. Introduction
2. Geological Context
3. Data Acquisition
3.1. Ferrara Site
3.2. Kaštela Site
4. Processing Methods
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lancellotta, R. Geotechnical Engineering; CRC Press: London, UK, 2008. [Google Scholar]
- Cardarelli, E.; Cercato, M.; De Donno, G. Characterization of an earth-filled dam through the combined use of electrical resistivity tomography, P-and SH-wave seismic tomography and surface wave data. J. Appl. Geophys. 2014, 106, 87–95. [Google Scholar] [CrossRef]
- Ansal, A.; Kurtulus, A.; Tönük, G. Seismic microzonation and earthquake damage scenarios for urban areas. Soil Dyn. Earthq. Eng. 2010, 30, 1319–1328. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology; W.H. Freeman: San Francisco, CA, USA, 1980; Volume 1. [Google Scholar]
- Stein, S.; Wysession, M. An Introduction to Seismology, Earthquakes and Earth Structure; Blackwell Publishing Ltd.: Malden, MA, USA, 2009. [Google Scholar]
- Borcherdt, R.D. Estimates of site-dependend response spectra for design (methodology and justification). Earth Spectra 1994, 10, 617–654. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Simplified site classes and empirical amplification factors for site-dependent code provisions: NCEER, SEADC, BSSC. In Proceedings of the Workshop on Site Response during Earthquakes and Seismic Code Provisions, Los Angeles, CA, USA, 18–20 November 1992. [Google Scholar]
- Dobry, R.; Borcherdt, R.D.; Crouse, C.B.; Idriss, I.M.; Joyner, W.B.; Martin, G.R.; Seed, R.B. New site coefficients and site classification system used in recent building seismic code provisions. Earthquale Spectra 2000, 16, 41–67. [Google Scholar] [CrossRef]
- Sabetta, F.; Bommer, J. Modification of the spectral shapes and subsoil conditions in Eurocode 8. In Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, 9–13 September 2002. [Google Scholar]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Yust, M.B.S.; Cox, R.B.; Cheng, T. Epistemic Uncertainty in Vs Profiles and Vs30 Values Derived from Joint Consideration of Surface Wave and H/V Data at the FW07 TexNet Station. In Geotechnical Earthquake Engineering and Soil Dynamics V: Seismic Hazard Analysis, Earthquake Ground Motions, and Regional-Scale Assessment; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 387–399. [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Tech. Res. Inst. (Q. Rep.) 1989, 30. [Google Scholar]
- Chan, J.H.; Catchings, R.D.; Goldman, M.R.; Criley, C.J. VS30 at Three Strong-motion Recording Stations in Napa and Napa County, California—Main Street in Downtown Napa, Napa Fire Station Number 3, and Kreuzer Lane—Calculations Determined From s-Wave Refraction Tomography and Multichannel Analysis of Surface Waves (Rayleigh and Love); US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Da Col, F.; Accaino, F.; Böhm, G.; Meneghini, F. Characterisation of shallow sediments by processing of P, SH and SV wavefields in Kaštela (HR). Eng. Geol. 2021, 293, 106336. [Google Scholar] [CrossRef]
- Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J. Landslide characterization using P- and S-wave seismic refraction tomography—The importance of elastic moduli. J. Appl. Geophys. 2016, 134, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zelt, C.A.; Jaiswal, P. Detecting a known near-surface target through application of frequency-dependent traveltime tomography and full-waveform inversion to P- and SH-wave seismic refraction data. Geophysics 2017, 82, R1–R17. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Z.; Yang, W.; Wei, Y.; Huang, M. High-resoultion shallow anomaly characterization using cross-hole P-and S-wave tomography. J. Appl. Geophys. 2022, 201, 104649. [Google Scholar] [CrossRef]
- Fishman, K.L.; Ahmad, S. Seismic response for alluvial valleys subjected to SH, P and Sv waves. Soil Dyn. Earthq. Eng. 1995, 14, 249–258. [Google Scholar] [CrossRef]
- Yong-Gang, L. Seismic wave propagation in anisotropic rocks with applications to defining fractures in earth crust. In Rock Anisotropy, Fracture and Earthquake Assessment; Walter de Gruyter: Berlin, Germany, 2016. [Google Scholar]
- Herak, M. A New Concept of Geotectonics of the Dinarides; Jugoslavenska Akademija Znanosti i Umjetnosti: Zagreb, Croatia, 1986. [Google Scholar]
- Marincic, S.; Magas, N.; Borovic, I. Osnovna Geoloska Karta SFRJ 1: 100.000, List Split i Pripadaju i Tumac Karte, K33-21; Institute of Geology: Zagreb, Croatia, 1973. [Google Scholar]
- Buljan, R.; Pollack, D.; Pest, D. Engineering geological properties of the rock mass along the Kastela Bay sewage system. Geol. Soc. Lond. 2006, 740, 467–477. [Google Scholar]
- Babic, L.; Zupancic, J. Evolution of a river-fed foreland basin fill: The north Dalmatia flysch revisited (Eocene, outer dinarides). Nat. Croat. 2008, 17, 357–374. [Google Scholar]
- Gargini, A.; Bondesan, M.; Pasini, M.; Messina, A.; Piccinini, L.; Zanella, A.; Oddone, E. Supporto Tecnico Geologico-Idrologico Alla Procedura di Valutazione e Sostenibilità Ambientale per Il Nuovo Piano Regolatore del Comune di Ferrar—Zona via Bologna—Direttrice per Cona. Relazione n. 1/03.01; Comune di Ferrara: Ferrara, Italy, 2003. [Google Scholar]
- Fontana, D.; Lugli, S.; Marchetti Dori, S.; Caputo, R.; Stefani, M. Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): Clues for source layer identification and liquefaction regime. Sediment. Geol. 2015, 325, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Pieri, M.; Groppi, G. Subsurface Geological Structure of the Po Plain, Italy. Pubbl.414. P.F. Geodinamica; C.N.R.: Milano, Italy, 1981; pp. 1–23. [Google Scholar]
- Wathelet, M. An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophys. Res. Lett. 2008, 35, L09301. [Google Scholar] [CrossRef] [Green Version]
- Baradello, L.; Accaino, F. Vibroseis deconvolution: A comparison of pre and post correlation vibroseis deconvolution data in real noisy data. J. Appl. Geophys. 2013, 92, 50–56. [Google Scholar] [CrossRef]
- Böhm, G.; OGS Research Group. Cat3D. Computer Aided Tomography for 3-D Models. User Manual; OGS: Trieste, Italy, 2014. [Google Scholar]
- Stewart, R. Exploration Seismic Tomography: Fundamentals. In Course Note Series; Domenico, S.N., Ed.; SEG—Society of Exploration Geophysicists: Tulsa, OK, USA, 1993; Volume 3. [Google Scholar]
- Condotta, M. Progetto di Adeguamento Funzionale del Sistema Irriguo Della Valli Giralda, Gaffaro e Falce in Comune di Codigoro (FE). Relazione Geologica e Geotecnica. Elaborato 1.2; Consorzio di Bonifica Pianura di Ferrara: Ferrara, Italy, 2011. [Google Scholar]
- Rossi, F.; Tumiati, D.; Bassi, A.; Perelli, P. Piano Particolareggiato di Iniziativa Pubblica—Sottozona F2—Polo Ospedaliero di Cona. Rapporto di Valutazione Ambientale del Piano Particolareggiato in Località Cona di Ferrara; Comune di Ferrara: Ferrara, Italy, 2011. [Google Scholar]
- Wang, Z. Seismic anisotropy in sedimentary rocks. Part 2, Laboratory tests. Geophysics 2002, 67, 1348–1672. [Google Scholar] [CrossRef]
- Sayers, C.M.; Den Boer, L.D. The elastic anisotropy of clay minerals. Geophysics 2016, 81, C193–C203. [Google Scholar] [CrossRef]
Line Name | First Rec. N | First Rec. E | Last Rec. N | Last Rec. E | UTM Zone |
---|---|---|---|---|---|
Ferrara Line 1 | 4964800 | 713828 | 4964503 | 713850 | 32 |
Ferrara Line 2 | 4964552 | 712300 | 4964258 | 712347 | 32 |
Kastela Line 1 | 4822696 | 611466 | 4822770 | 611167 | 33 |
Kastela Line 2 | 4822643 | 612232 | 4822660 | 611943 | 33 |
Kastela Line 3 | 4822683 | 611984 | 4822703 | 611821 | 33 |
Layer Number | Thickness | Vs | Density |
---|---|---|---|
1 | 3–15 m | 100–200 m/s | 2000 kg/m3 |
2 | 3–15 m | 120–220 m/s | |
3 | 3–15 m | 140–240 m/s | |
Halfspace | 150–250 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Col, F.; Accaino, F.; Böhm, G.; Meneghini, F. Analysis of the Seismic Properties for Engineering Purposes of the Shallow Subsurface: Two Case Studies from Italy and Croatia. Appl. Sci. 2022, 12, 4535. https://doi.org/10.3390/app12094535
Da Col F, Accaino F, Böhm G, Meneghini F. Analysis of the Seismic Properties for Engineering Purposes of the Shallow Subsurface: Two Case Studies from Italy and Croatia. Applied Sciences. 2022; 12(9):4535. https://doi.org/10.3390/app12094535
Chicago/Turabian StyleDa Col, Federico, Flavio Accaino, Gualtiero Böhm, and Fabio Meneghini. 2022. "Analysis of the Seismic Properties for Engineering Purposes of the Shallow Subsurface: Two Case Studies from Italy and Croatia" Applied Sciences 12, no. 9: 4535. https://doi.org/10.3390/app12094535
APA StyleDa Col, F., Accaino, F., Böhm, G., & Meneghini, F. (2022). Analysis of the Seismic Properties for Engineering Purposes of the Shallow Subsurface: Two Case Studies from Italy and Croatia. Applied Sciences, 12(9), 4535. https://doi.org/10.3390/app12094535