Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review
Abstract
:1. Introduction
Aromachology and Aromatherapy
2. Chemistry of Essential Oils
3. Methodology
4. How Does Aroma Work with the Brain?
5. Phytoncides and Their Functions
5.1. Phytoncides in Dental Care
5.2. Anti-Cancer Activity of Phytoncides
5.3. Benefits of Exposure to the Forest Environment
6. Essential Oils and Their Health Outcomes
Scheme 1. | Essential Oil (EO) | Scientific Name of the Plant | Function | References |
---|---|---|---|---|
1 | Lemon EO, Mandarin EO, Grapefruit EO, Orange EO | Citrus limon (L.) Burm. f. (C. limon), Citrus reticulata L. var. (C. reticulata), Citrus paradisi L., Citrus sinensis (L.) Osbeck (C. sinensis) | Anti-bacterial, antioxidant activity. | [73,74] |
2 | Pumelo EO, Sweet orange EO | Citrus maxima C. sinensis | Anti-fungal, anti-aflatoxigenic, and antioxidant. | [75] |
3 | Kumquat EO | Citrus japonica Thunb. | Anti-bacterial and anti-fungal activity. | [76] |
4 | Neroli EO | C. aurantium | Anti-microbial and antioxidant activity against various bacterial species. | [78] |
5 | Mandarin EO | C. reticulata | Anti-bacterial, anti-fungal activity; food preservative. | [81] |
6 | Essential oils | Melaleuca species Citrus species Cupresses species | Anti-Candida activity. | [82] |
7 | Bergamot EO | C. bergamia | Anti-mycoplasmal activity. | [83] |
8 | Lemon EO | C. limon, Melissa officinalis | Active against vector, Anopheles stephensi. | [84] |
9 | Bitter orange EO, Sweet orange EO | C. aurantium C. sinensis | Larvicidal activity against malarial vector Anopheles labranchiae. | [85] |
10 | Sweet orange EO, β-cyclodextrin complexes | C. sinensis | Larvicidal activity against dengue vector, Aedes aegypti. | [86] |
11 | Bergamot EO | C. bergamia | Antiseptic and anthelminthic activity facilitates wound healing. | [87] |
12 | α-Pinene | - | Increases the anticancer effect by accelerating the activation of natural killer (NK) cells and cytotoxicity via ERK/AKT signal pathways. | [88] |
13 | Sweet orange EO | C. sinensis | Anxiolytic effect in individuals exposed to an anxiogenic situation. | [105] |
14 | Bitter orange EO | C. aurantium | Anxiolytic effect in chronic myeloid leukemia patients. | [106] |
15 | Bitter orange EO | C. aurantium | Anxiolytic effect in crack cocaine users. | [107] |
16 | Bitter orange EO | C. aurantium | Anxiolytic activity in rodents. | [108] |
17 | Kumquat EO | Citrus japonica Thunb. | Anti-proliferative effect against human prostate cancer cells. | [111] |
18 | EO from Hinoki, Japanese cedar | Chamaecyparis obtusa Cryptomeria japonica | Decreases production of the stress hormone and increases NK cell activity. | [112] |
19 | Hinoki cypress leaf EO | Chamaecyparis obtusa | Induces physiological relaxation by increasing parasympathetic nervous activity. | [113] |
20 | EO of flower extract | C. aurantium | Restores learning and memory in scopolamine-induced memory impairment and in treating Alzheimer’s disease. | [114] |
21 | Sweet orange EO, Grapefruit, Lemon | Citrus aurantium var. dulcis Citrus paradisi, C. limon | Induces apoptosis in Human leukemic (HL-60) cells. | [127] |
22 | Blood orange EO | C. sinensis | Inhibits vascular endothelial growth factor (VEGF), prevents cell proliferation, and induces apoptosis in colon cancer cells. | [128] |
23 | A mixture of lavender, ylang-ylang marjoram and neroli EO | Lavandula angustifolia (L. angustifolia), Cananga odorata (C. odorata), Origanum majorana, Citrus aurantium L. (C. aurantium) | Decreases systolic and diastolic blood pressure. Reduces the salivary cortisol level in hypertensive subjects. | [153] |
24 | Lavender EO | L. angustifolia | Reduces mental stress and increases arousal rate. | [157] |
25 | Yuzu EO | Citrus junos Sieb. ex Tanaka (C. junos) | Reduces negative emotional stress. Decrease total mood disturbance, tension, anxiety, anger, hostility, and fatigue during the premenstrual stage. | [158,159] |
26 | Yuzu EO | C. junos | Inhibits platelet aggregation. | [160] |
27 | Ylang-ylang oil | C. odorata | Decreases blood pressure. | [161] |
28 | Bitter orange EO | C. aurantium | Anti-spoilage, antibacterial, antifungal, and antioxidant activity. Flavoring property for food preservation. | [162] |
29 | Peppermint EO, ylang-ylang EO | Mentha piperita C. odorata | Increases alertness. | [163] |
30 | Lavender EO | L. angustifolia | Alleviates agitated behaviors in dementia patients. | [165] |
31 | Lavender and Rosemary EO | L. angustifolia Rosmarinus officinalis | Reduces anxiety and produces relaxation and alertness. | [169] |
32 | Bitter orange EO | C. aurantium | Aids in treating insomnia, epilepsy, and anxiety. | [170] |
33 | Lavender EO | L. angustifolia | Relieves stress. | [171] |
34 | Litsea EO | Litsea cubeba | Reduces confusion and stress; improves mood. | [174] |
35 | Agave EO | Polianthes tuberosa | Reduces anxiety. | [178] |
36 | Bitter orange EO | C. aurantium | Alleviate first-stage labor pain and anxiety in primiparous women. | [180] |
37 | Ginger EO, sweet orange EO | Zingiber officinale Citrus sinensis | Reduce knee pain in elder people. | [181] |
38 | Bergamot EO | Citrus bergamia Risso et Poiteau (C. bergamia) | Antinociceptive and antiallodynic activity. Aids in treating chronic pain. | [182] |
39 | Bitter orange EO, damask rose blossom EO | C. aurantium Rosa damascena mill L. | Improves the symptoms of premenstrual syndrome. | [183,184] |
40 | Neroli EO | C. aurantium | Relieves menopausal symptoms, reduces blood pressure, and increases sexual desire in postmenopausal women. | [185] |
41 | Neroli EO | C. aurantium | Reduces anxiety in postmenopausal women. | [186] |
7. Challenges and Opportunities
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montecristo Magazine. Available online: https://montecristomagazine.com/beauty/aromachology-new-science-evoking-memory-scent (accessed on 11 January 2022).
- Herz, R.S. Aromatherapy facts and fictions: A scientific analysis of olfactory effects on mood, physiology and behaviour. Int. J. Neurosci. 2009, 119, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Tomi, K.; Fushiki, Y.; Murakami, K.; Matsumura, Y.; Hayashi, T.; Yazawa, S. Relationships between lavender aroma component and aromachology effect. Acta Hortic. 2011, 925, 299–306. [Google Scholar] [CrossRef]
- Wang, C.X.; Chen, S.L. Aromachology and its application in the textile field. Fibres Text. East. Eur. 2005, 13, 41–44. [Google Scholar]
- Beyliklioğlu, A.; Arslan, S. Effect of lavender oil on the anxiety of patients before breast surgery. J. Perianesth. Nurs. 2019, 34, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Yayla, E.M.; Ozdemir, L. Effect of inhalation aromatherapy on procedural pain and anxiety after needle insertion into an implantable central venous port catheter: A quasi-randomized controlled pilot study. Cancer Nurs. 2019, 42, 35–41. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef]
- Krishna, A.; Tiwari, R.; Kumar, S. Aromatherapy-an alternative health care through essential oils. J. Med. Aromat. Plant Sci. 2000, 22, 798–804. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Dunning, T. Aromatherapy: Overview, safety and quality issues. OA Altern. Med. 2013, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction techniques, pharmaceutical nnd therapeutic potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Burger, P.; Plainfossé, H.; Brochet, X.; Chemat, F.; Fernandez, X. Extraction of natural fragrance ingredients: History overview and future trends. Chem. Biodivers. 2019, 16, e1900424. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, D.P.; Silva, R.; Silva, E.; Gavioli, E. Essential oils and their constituents: An alternative source for novel antidepressants. Molecules 2017, 22, 1290. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Whiley, H.; Gaskin, S.; Schroder, T.; Ross, K. Antifungal properties of essential oils for improvement of indoor air quality: A review. Rev. Environ. Health 2018, 33, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Naqvi, A.A.; Ahmad, N.; Baraka, M.; Mastour, M.; Al Sharedah, S.; Al Ghamdi, S.; Al Rabae, G.; Al Ghamdi, M.S. Awareness, perception, attitude, and knowledge regarding complementary and alternative medicines (CAMs) among the pharmacy and medical students public university in Saudi Arabia. Arch. Pharm. Pract. 2017, 8, 51–63. [Google Scholar] [CrossRef]
- Butje, A.; Repede, E.; Shattell, M.M. Healing scents: An overview of clinical aromatherapy for emotional distress. J. Psychosoc. Nurs. Ment. Health Serv. 2008, 46, 46–52. [Google Scholar] [CrossRef]
- Horowitz, S. Aromatherapy: Current and emerging applications. Altern. Complement. Ther. 2011, 17, 26–31. [Google Scholar] [CrossRef]
- Svoboda, K.P.; Deans, S.G. Biological activities of essential oils from selected aromatic plants. Acta Hortic. 1995, 390, 203–209. [Google Scholar] [CrossRef]
- Svoboda, K.; Hampson, J.; Hunter, E.A. Production and bioactivity of essential oils in secretary tissues of higher plants. In Proceedings of the World Aromatherapy II Conference of National Association for Holistic Aromatherapy (NAHA), St. Louis, MI, USA, 25–28 September 1998; pp. 105–127. [Google Scholar]
- Lee, M.S.; Choi, J.; Posadzki, P.; Ernst, E. Aromatherapy for health care: An overview of systematic reviews. Maturitas 2012, 71, 257–260. [Google Scholar] [CrossRef]
- Dana, B. Aromatherapy-Its Past and Future, 1st ed.; Drug and Cosmetic Industry: New York, NY, USA, 1998; pp. 22–23. [Google Scholar]
- Nomura, M. Phytoncide—Its Properties and Applications in Practical Use. In Gas Biology Research in Clinical Practice; Yoshikawa, T., Naito, Y., Eds.; Karger Publishers: Basel, Switzerland, 2011; pp. 133–143. [Google Scholar]
- Sadgrove, N.; Jones, G. A contemporary introduction to essential oils: Chemistry, bioactivity and prospects for Australian agriculture. Agriculture 2015, 5, 48–102. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusuma, H.S.; Mahfud, M. Chemical Composition of Essential Oil of Indonesia Sandalwood Extracted by Microwave-Assisted Hydrodistillation. AIP Conf. Proc. 2016, 1755, 050001. [Google Scholar]
- Kang, A.; Lee, T.S. Chapter 2—Secondary metabolism for isoprenoid-based biofuels. In Biotechnology for Biofuel Production and Optimization; Eckert, C.A., Trinh, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 35–71. [Google Scholar]
- Sell, C.S. The Chemistry of Fragrances: From Perfumer to Consumer; Royal Society of Chemistry: London, UK, 2006. [Google Scholar]
- Lorigooini, Z.; Jamshidi-Kia, F.; Dodman, S. Chapter 8—Analysis of sesquiterpenes and sesquiterpenoids. In Recent Advances in Natural Products Analysis; Sanches, S.A., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–312. [Google Scholar]
- Li, Z.; Howell, K.; Fang, Z.; Zhang, P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr. Rev. Food Sci. Food Saf. 2019, 19, 247–281. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, L.; Martins, A.; Correia, H. Raw materials: The importance of quality and safety. A review. Flavour Fragr. J. 2010, 25, 253–271. [Google Scholar] [CrossRef]
- De Groot, A.C.; Schmidt, E. Essential oils, part IV: Contact allergy. Dermatitis 2016, 27, 170–175. [Google Scholar] [CrossRef]
- Şanli, A.; Karadoğan, T. Geographical impact on essential oil composition of endemic Kundmannia anatolica Hub.-Mor. (Apiaceae). Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 131–137. [Google Scholar] [CrossRef]
- Kutlu, A.K.; Yılmaz, E.; Çeçen, D. Effects of aroma inhalation on examination anxiety. Teach. Learn. Nurs. 2008, 3, 125–130. [Google Scholar] [CrossRef]
- Nan Lv, X.; Jun Liu, Z.; Jing Zhang, H.; Tzeng, C.M. Aromatherapy and the central nerve system (CNS): Therapeutic mechanism and its associated genes. Curr. Drug Targets 2013, 14, 872–879. [Google Scholar]
- Lwin, M.O.; Morrin, M.; Chong, C.S.T.; Goh, S.X. Odor semantics and visual cues: What we smell impacts where we look, what we remember, and what we want to buy. J. Behav. Decis. Mak. 2016, 29, 336–350. [Google Scholar] [CrossRef]
- Price, S.; Price, L. Aromatherapy for Health Professionals, 4th ed.; Churchill Livingstone: London, UK, 2011; p. 355. [Google Scholar]
- Murphy, C.; Cain, W.S.; Bartoshuk, L.M. Mutual action of taste and olfaction. Sens. Process. 1977, 1, 204–211. [Google Scholar]
- Rozin, P. “Taste-smell confusions” and the duality of the olfactory sense. Percept. Psychophys. 1982, 31, 397–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, D.M.; Gerber, J.C.; Mak, Y.E.; Hummel, T. Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 2005, 47, 593–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousmans, S.; Robin, O.; Dittmar, A.; Vernet-Maury, E. Autonomic nervous system responses associated with primary tastes. Chem. Sens. 2000, 25, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, Y.; Kubota, A.; Taira, M.; Katsuyama, N.; Sugimoto, K. Effects of oral stimulation with capsaicin on salivary secretion and neural activities in the autonomic system and the brain. J. Dent. Sci. 2018, 13, 116–123. [Google Scholar] [CrossRef]
- Hummel, T.; Heilmann, S. Olfactory event-related potentials in response to ortho- and retronasal stimulation with odors related or unrelated to foods. Int. Dairy J. 2008, 18, 874–878. [Google Scholar] [CrossRef]
- Shipley, M.T.; Reyes, P. Anatomical of the human olfactory bulb and central olfactory pathways. In The Human Sense of Smell; Laing, D.G., Doty, R.L., Breipohl, W., Eds.; Springer: Berlin, Germany, 1991; pp. 29–60. [Google Scholar]
- Price, J.L.; Slotnick, B.M. Dual olfactory representation in the rat thalamus: An anatomical and electrophysiological study. J. Comp. Neurol. 1983, 215, 63–77. [Google Scholar] [CrossRef]
- Potter, H.; Nauta, W.J. A Note on the problem of olfactory associations of the orbitofrontal cortex in the monkey. Neuroscience 1979, 4, 361–367. [Google Scholar] [CrossRef]
- Van Hoesen, G.; Pandya, D.N. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey-1. Temporal lobe afferents. Brain Res. 1975, 95, 1–24. [Google Scholar] [CrossRef]
- Von Bonin, G.; Green, J.R. Connections between orbital cortex and diencephalon in the macaque. J. Comp. Neurol. 1949, 92, 243–254. [Google Scholar] [CrossRef]
- Cavada, C.; Company, T.; Tejedor, J.; Crz-Rizzolo, R.J.; Reinoso-Suarez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex. 2000, 10, 220–242. [Google Scholar] [CrossRef]
- Mesulam, M.M.; Mufson, E.J. The insula of Reil in man and monkey. Architectonics, connectivity, and function. In Cerebral Cortex, Vol. 4: Association and Auditory Cortices; Peters, A., Jones, E.G., Eds.; Plenum Press: New York, NY, USA; London, UK, 1985; pp. 179–224. [Google Scholar]
- Shipley, M.T.; McLean, J.H.; Ennis, M. Olfactory system. In Rat Nervous System; Paxinos, G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 899–926. [Google Scholar]
- Royet, J.P.; Plailly, J. Lateralization of Olfactory Processes. Chem. Sens. 2004, 29, 731–745. [Google Scholar] [CrossRef]
- Jirovetz, J.; Buchbauer, G.; Jager, W.; Raverdino, V.; Nikiforov, A. Determination of lavender oil fragrance compounds in blood samples. Fresenius J. Anal. Chem. 1990, 338, 922–923. [Google Scholar] [CrossRef]
- Jirovetz, J.; Buchbauer, G.; Jager, W.; Woiiieh, A.; Nikiforov, A. Analysis of fragrance compounds in blood samples of mice by gas chromatography, mass spectrometry, GC/FTIR and GC/AES after inhalation of sandalwood oil. Biomed. Chromatogr. 1992, 6, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Herz, R.S. Ah, sweet skunk! Why we like or dislike what we smell. Cerebrum 2001, 3, 31–47. [Google Scholar]
- Herz, R.S.; Beland, S.L.; Hellerstein, M. Changing odor hedonic perception through emotional associations in humans. Int. J. Comp. Psychol. 2004, 17, 315–339. [Google Scholar]
- Alaoui-Ismaili, O.; Robin, O.; Rada, H.; Dittmar, A.; Vernet-Maury, E. Basic emotions evoked by odorants: Comparison between autonomic responses and self-evaluation. Physiol. Behav. 1997, 62, 713–720. [Google Scholar] [CrossRef]
- Ehrlichman, H.; Kuhl, S.B.; Zhu, J.; Warrenburg, S. Startle reflex modulation by pleasant and unpleasant odors in a between-subjects design. Psychophysiology 1997, 34, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Mennella, J.A.; Beauchamp, G.K. Understanding the origin of flavor preferences. Chem. Sens. 2005, 30 (Suppl. 1), i242–i243. [Google Scholar] [CrossRef]
- Salovey, P.; John, D.M.; David., L.R. Mood and Helping: Mood as a Motivator of Helping and Helping as a Regulator of Mood; Clark, M.S., Ed.; Sage Publishing Inc.: Newbury Park, CA, USA, 1991; pp. 215–237. [Google Scholar]
- Isen, A.M. Toward understanding the role of affect in cognition. In Handbook of Social Cognition; Wyer, A., Scrull, T., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1984; Volume 3, pp. 179–236. [Google Scholar]
- Wright, T.A.; Staw, B.M. Affect and favorable work outcomes: Two longitudinal tests of the happy-productive worker thesis. J. Organ. Behav. 1999, 20, 1–23. [Google Scholar] [CrossRef]
- Underwood, B.; Froming, W.J.; Moore, B.S. Mood, attention, and altruism: A search for mediating variables. Dev. Psychol. 1997, 13, 541–542. [Google Scholar] [CrossRef]
- Robin, O.; Alaoui-Ismaili, O.; Dittmar, A.; Vernet-Mauri, E. Emotional responses evoked by dental odors: An evaluation from autonomic parameters. J. Dent. Res. 1998, 77, 1638–1946. [Google Scholar] [CrossRef] [PubMed]
- Cahill, L.; Babinsky, R.; Markowitsch, H.J.; McGaugh, J.L. The amygdala and emotional memory. Nature 1995, 377, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and antimicrobial properties of essential oils of five Moroccan pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Matsubara, E.; Kawai, S. Gender differences in the psychophysiological effects induced by VOCs emitted from Japanese cedar (Cryptomeria japonica). Environ. Health Prev. Med. 2018, 23, 10. [Google Scholar] [CrossRef] [Green Version]
- Babita, S.; Sellam, P.; Majumder, J.; Rai, P. Floral essential oils: Importance and uses for mankind. HortFlora Res. Spectr. 2014, 3, 7–13. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Memon, A.; Kim, B.Y.; Kim, S.E.; Pyao, Y.; Lee, Y.G.; Kang, S.C.; Lee, W.K. Anti-inflammatory effect of phytoncide in an animal model of gastrointestinal inflammation. Molecules 2021, 26, 1895. [Google Scholar] [CrossRef]
- Li, Q.; Nakadai, A.; Matsushima, H.; Miyazaki, Y.; Krensky, A.M.; Kawada, T.; Morimoto, K. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharm. Immunot. 2006, 28, 319–333. [Google Scholar] [CrossRef]
- Abe, T.; Hisama, M.; Tanimoto, S.; Shibayama, H.; Mihara, Y.; Nomura, M. Antioxidant effects and antimicrobial activites of phytoncide. Biocontrol Sci. 2008, 13, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Perez-Álvarez, J. Antibacterial activity of lemon (Citrus limon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. J. Food Saf. 2008, 28, 567–576. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Mohamady, M.A.; Fernández-López, J.; Abd El Razik, K.A.; Omer, E.A.; Pérez-Alvarez, J.A.; Sendra, E. In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011, 22, 1715–1722. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Zeng, W.C.; Xu, P.Y.; Lan, Y.J.; Zhu, R.X.; Zhong, K.; Huang, Y.N.; Gao, H. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. Int. J. Mol. Sci. 2012, 13, 3382–3393. [Google Scholar] [CrossRef] [PubMed]
- Süntar, I.; Tumen, I.; Ustün, O.; Keleş, H.; Akkol, E.K. Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. J. Ethnopharmacol. 2012, 139, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Hamdi, N.; Ben Halima, N.; Abdelkafi, S. Characterization of essential oil from Citrus aurantium L. flowers: Antimicrobial and antioxidant activities. J. Oleo Sci. 2013, 62, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Astani, A.; Schnitzler, P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran. J. Microbiol. 2014, 6, 149–155. [Google Scholar]
- Xie, Q.; Liu, Z.; Li, Z. Chemical composition and antioxidant activity of essential oil of six pinus taxa native to China. Molecules 2015, 20, 9380–9392. [Google Scholar] [CrossRef] [Green Version]
- Yi, F.; Jin, R.; Sun, J.; Ma, B.; Bao, X. Evaluation of mechanical-pressed essential oil from Nanfeng mandarin (Citrus reticulata Blanco cv. Kinokuni) as a food preservative based on antimicrobial and antioxidant activities. LWT Food Sci. Technol. 2018, 95, 346–353. [Google Scholar] [CrossRef]
- Silva, R.A.D.; Antonieti, F.M.P.M.; Röder, D.V.D.B.; Pedroso, R.D.S. Essential oils of Melaleuca, Citrus, Cupressus, and Litsea for the management of infections caused by Candida species: A Systematic Review. Pharmaceutics 2021, 13, 1700. [Google Scholar] [CrossRef]
- Furneri, P.M.; Mondello, L.; Mandalari, G.; Paolino, D.; Dugo, P.; Garozzo, A.; Bisignano, G. In vitro antimycoplasmal activity of Citrus bergamia essential oil and its major components. Eur. J. Med. Chem. 2012, 52, 66–69. [Google Scholar] [CrossRef]
- Oshaghi, M.A.; Ghalandari, R.; Vatandoost, H.; Shayeghi, M.; Abolhassani, M.; Hashemzadeh, M. Repellent effect of extracts and essential oils of Citrus limon (Rutaceae) and Melissa officinalis (Labiatae) against main malaria vector, Anopheles stephensi (Diptera: Culicidae). Iran. J. Public Health 2003, 32, 47–52. [Google Scholar]
- El-Akhal, F.; El Ouali Lalami, A.; Guemmouh, R. Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2015, 5, 930–934. [Google Scholar] [CrossRef]
- Galvão, J.G.; Silva, V.F.; Ferreira, S.G.; França, F.R.M.; Santos, D.A.; Freitas, L.S.; Alves, P.B.; Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. β-Cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae. Thermochim. Acta. 2015, 608, 14–19. [Google Scholar] [CrossRef]
- Cosentino, M.; Luini, A.; Bombelli, R.; Corasaniti, M.T.; Bagetta, G.; Marino, F. The essential oil of bergamot stimulates reactive oxygen species production in human polymorphonuclear leukocytes. Phytother. Res. 2014, 28, 1232–1239. [Google Scholar] [CrossRef]
- Jo, H.; Cha, B.; Kim, H.; Brito, S.; Kwak, B.M.; Kim, S.T.; Bin, B.H.; Lee, M.G. α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Int. J. Mol. Sci. 2021, 22, 656. [Google Scholar] [CrossRef]
- Satou, T.; Kasuya, H.; Maeda, K.; Koike, K. Daily inhalation of α-pinene in mice: Effects on behavior and organ accumulation. Phytother. Res. 2014, 28, 1284–1287. [Google Scholar] [CrossRef]
- Yang, H.; Woo, J.; Pae, A.N.; Um, M.Y.; Cho, N.C.; Park, K.D.; Yoon, M.; Kim, J.; Lee, C.J.; Cho, S. α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol. Pharmacol. 2016, 90, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Yang, H.; Yoon, M.; Gadhe, C.G.; Pae, A.N.; Cho, S.; Lee, C.J. 3-Carene, a phytoncide from pine tree has a sleep enhancing effect by targeting the GABAA-benzodiazepine receptors. Exp. Neurobiol. 2019, 28, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.J.; et al. Effect of phytoncide from trees on human natural killer cell function. Int. J. Immunopath. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef]
- Kang, S.N.; Kim, S.E.; Choi, J.; Park, K.; Goo, J.H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Joung, Y.K.; Lee, J.; et al. Comparison of phytoncide with sirolimus as a novel drug candidate for drug-eluting stent. Biomaterials 2015, 44, 1–10. [Google Scholar] [CrossRef]
- Kim, S.Q.; Shin, M.K.; Auh, Q.S.; Lee, J.Y.; Hong, J.P.; Chun, Y.H. Effect of phytoncide on porphyromonas gingivalis. J. Oral Med. Pain. 2007, 32, 137–150. [Google Scholar]
- Rasch, B.; Büchel, C.; Gais, S.; Born, J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 2007, 315, 1426–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schredl, M.; Atanasova, D.; Hormann, K.; Maurer, T.J.; Hummel, T.; Stuck, B.A. Information processing during sleep: The effect of olfactory stimuli on dream content and dream emotions. J. Sleep Res. 2009, 18, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Ko, L.W.; Su, C.H.; Yang, M.H.; Liu, S.Y.; Su, T.P. A pilot study on essential oil aroma stimulation for enhancing slow-wave EEG in sleeping brain. Sci. Rep. 2021, 11, 1078. [Google Scholar] [CrossRef]
- Woo, J.; Lee, C.J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 2020, 29, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Lee, D.H.; Jung, Y.J.; Shin, S.Y.; Koh, D.; Lee, Y.H. α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. Appl. Biol. Chem. 2016, 59, 511–516. [Google Scholar] [CrossRef]
- De Groot, P.; Nott, R.; MacDonald, L. Influence of enantiomers of α-pinene on the response of the red pine cone beetle, Conophthorus resinosae to its pheromone pityol. Entomol. Exp. Appl. 2002, 105, 169–174. [Google Scholar] [CrossRef]
- Tahir, K.E.; Al-Halbosiy, M.F.; Al-Subhi, A.M.; Al-Halbosiy, M.F. Some cardiovascular effects of the dethylmoquinonated Nigella sativa volatile oil and its major components α-pinene and p-cymene in rats. Saudi Pharm. J. 2003, 11, 104–110. [Google Scholar]
- Gomes-Carneiro, M.R.; Viana, M.E.; Felzenszwalb, I.; Paumgartten, F.J. Evaluation of beta-myrcene, alpha-terpinene and (+)- and (−)-alpha-pinene in the Salmonella/microsome assay. Food Chem. Toxicol. 2005, 43, 247–252. [Google Scholar] [CrossRef]
- Him, A.; Ozbek, H.; Turel, I.; Oner, A.C. Antinociceptive activity of alpha-pinene and fenchone. Pharmacologyonline 2008, 3, 363–369. [Google Scholar]
- Kang, S.; Lee, J.S.; Lee, H.C.; Petriello, M.C.; Kim, B.Y.; Do, J.T.; Lim, D.S.; Lee, H.G.; Han, S.G. Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J. Microbiol. Biotechnol. 2016, 26, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Goes, T.C.; Antunes, F.D.; Alves, P.B.; Teixeira-Silva, F. Effect of sweet orange aroma on experimental anxiety in humans. J. Altern. Complement. Med. 2012, 18, 798–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimenta, F.C.F.; Alves, M.F.; Pimenta, M.B.F.; Melo, S.A.L.; de Almeida, A.A.F.; Leite, J.R.; Pordeus, L.C.D.M.; Diniz, M.D.F.F.M.; de Almeida, R.N. Anxiolytic effect of Citrus aurantium L. on patients with chronic myeloid leukemia. Phyther. Res. 2016, 30, 613–617. [Google Scholar] [CrossRef]
- Chaves Neto, G.; Braga, J.E.F.; Alves, M.F.; de Morais Pordeus, L.C.; Dos Santos, S.G.; Scotti, M.T.; Almeida, R.N.; Diniz, M.F.F.M. Anxiolytic effect of Citrus aurantium L. in crack users. Evid. Based Complement. Altern. Med. 2017, 2017, 7217619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pultrini Ade, M.; Galindo, L.A.; Costa, M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci. 2006, 78, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Ocete, M.A.; Risco, S.; Zarzuelo, A.; Jimenez, J. Pharmacological activity of the essential oil of Bupleurum gibraltaricum: Anti-inflammatory activity and effects on isolated rat uteri. J. Ethnopharmacol. 1989, 25, 305–313. [Google Scholar] [CrossRef]
- Gil, M.L.; Jimenez, J.; Ocete, M.A.; Zarzuelo, A.; Cabo, M.M. Comparative study of different essential oils of Bupleurum gibraltaricum Lamarck. Pharmazie 1989, 44, 284–287. [Google Scholar]
- Jayaprakasha, G.K.; Murthy, K.N.C.; Demarais, R.; Patil, B.S. Inhibition of prostate cancer (LNCaP) cell proliferation by volatile components from Nagami kumquats. Planta Med. 2012, 78, 974–980. [Google Scholar] [CrossRef]
- Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 2010, 15, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Ikei, H.; Song, C.; Miyazaki, Y. Physiological effect of olfactory stimulation by Hinoki cypress (Chamaecyparis obtusa) leaf oil. J. Physiol. Anthropol. 2015, 34, 44. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, S.; Rabiei, Z.; Alibabaei, Z.; Mokhtari, S.; Rafieian-Kopaei, M.; Deris, F. Antiamnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol. Sci. 2014, 36, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, B. The effects of olfactory stimuli on scholastic performance. Ir. J. Educ. 2005, 36, 86–90. [Google Scholar]
- Sumi, Y.; Miura, H.; Michiwaki, Y.; Nagaosa, S.; Nagaya, M. Colonization of dental plaque by respiratory pathogens in dependent elderly. Arch. Gerontol. Geriatr. 2007, 44, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Kim, M.J.; Oh, S.H.; Kwon, J.S. Novel Dental Poly (Methyl Methacrylate) Containing Phytoncide for Antifungal Effect and Inhibition of Oral Multispecies Biofilm. Materials 2020, 13, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Do, H.S.; Min, K.J. Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE 2015, 10, e0143450. [Google Scholar] [CrossRef] [PubMed]
- Szyszkowska, A.; Koper, J.; Szczerba, J.; Puławska, M. The use of medicinal plants in dental treatment. Structure 2010, 56, 97–107. [Google Scholar]
- An, S.; Judge, R.B.; Wong, R.H.; Arzmi, M.H.; Palamara, J.E.; Dashper, S.G. Incorporation of the microencapsulated antimicrobial agent phytoncide into denture base resin. Aust. Dent. J. 2018, 63, 302–311. [Google Scholar] [CrossRef]
- Kang, H. Phytoncide secrets. Historynet 2003, 1, 1–200. [Google Scholar]
- Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Sci. World J. 2014, 2014, 953451. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharm. Sci. 2015, 127, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zhang, X.; Xu, Q.; Cai, Y.; Gao, W.; Chen, W. Anti-tumor activities and mechanism study of α-pinene derivative in vivo and in vitro. Cancer Chemother. Pharm. 2020, 85, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, R.; Wang, Y.; Yang, Y. α-Pinene inhibits human prostate cancer growth in a mouse xenograft model. Chemotherapy 2018, 63, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, Y.; Zhu, Y.; Zhou, B.; Ren, C.; Liang, S.; Guo, Y. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Med. Sci. Monit. 2019, 25, 6631–6638. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.; Sakaguchi, I.; Mori, M.; Ikeda, N.; Kato, Y.; Minamino, M.; Watabe, K. Induction of apoptosis by Citrus paradisi essential oil in human leukemic (HL-60) cells. In Vivo 2003, 17, 553–559. [Google Scholar]
- Murthy, K.N.C.; Jayaprakasha, G.K.; Patil, B.S. D-limonene rich volatile oil from blood oranges inhibits angiogenesis, metastasis and cell death in human colon cancer cells. Life Sci. 2012, 91, 429–439. [Google Scholar] [CrossRef]
- Chae, Y.; Lee, S.; Jo, Y.; Kang, S.; Park, S.; Kang, H. The Effects of Forest Therapy on Immune Function. Int. J. Environ. Res. Public Health 2021, 18, 8440. [Google Scholar] [CrossRef]
- Park, B.J.; Kasetani, T.; Morikawa, T.; Tsunetsugu, Y.; Kagawa, T.; Miyazaki, Y. Physiological effects of forest recreation in a young conifer forest in Hinokage Town, Japan. Silva. Fenn. 2009, 43, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Tsunetsugu, Y.; Tsunetsugu, Y.; Park, B.J.; Miyazaki, Y. Trends in research related to “Shinrin-yoku” (taking in the forest atmosphere or forest bathing) in Japan. Environ. Health Prev. Med. 2010, 15, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Kagawa, T.; Miyazaki, Y. The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): Evidence from field experiments in 24 forests across Japan. Environ. Health Prev. Med. 2010, 15, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kawada, T. Effect of forest therapy on the human psycho-neuro-endocrino-immune network. Nihon. Eiseigaku. Zasshi. 2011, 66, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.M.; Park, S.M.; Lim, S.K.; Kim, W. Synergic effect of forest environment and therapeutic program for the treatment of depression. J. Korean Soc. For. Sci. 2012, 101, 677–685. [Google Scholar]
- Song, C.; Ikei, H.; Miyazaki, Y. Physiological effects of nature therapy: A review of the research in Japan. Int. J. Environ. Res. Public Health 2016, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Hisama, M.; Matsuda, S.; Tanaka, T.; Shibayama, H.; Nomura, M.; Iwaki, M. Suppression of mutagens-induced SOS response by phytoncide solution using Salmonella Typhimurium TA 1535/pSK1002 umu Test. J. Oleo Sci. 2008, 57, 381–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, B.; Lee, K.J.; Zaslawski, C.; Yeung, A.; Rosenthal, D.; Larkey, L.; Back, M. Health and well-being benefits of spending time in forests: Systematic review. Environ. Health Prev. Med. 2017, 22, 71. [Google Scholar] [CrossRef]
- Twohig-Bennett, C.; Jones, A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Morimoto, K.; Nakadai, A.; Inagaki, H.; Katsumata, M.; Shimizu, T.; Hirata, Y.; Hirata, K.; Suzuki, H.; Miyazaki, Y.; et al. Forest bathing enhances human natural killer activity and expression of anticancer proteins. Int. J. Immunopath. Ph. 2007, 20, 3–8. [Google Scholar] [CrossRef]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Li, Y.J.; Wakayama, Y.; et al. A forest bathing trip increases human natural killer activity and expression of anti-cancer proteins in female subjects. Int. J. Environ. Res. Public Health 2008, 22, 45–55. [Google Scholar]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, Y.J.; Wakayama, Y.; et al. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int. J. Immunopath. Ph. 2008, 21, 117–127. [Google Scholar] [CrossRef]
- Mao, G.X.; Cao, Y.B.; Lan, X.G.; He, Z.H.; Chen, Z.M.; Wang, Y.Z.; Hu, X.L.; Lv, Y.D.; Wang, G.F.; Yan, J. Therapeutic effect of forest bathing on human hypertension in the elderly. J. Cardiol. 2012, 60, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.B.; Yang, Z.X.; Mao, G.X.; Lyu, Y.D.; Wen, X.L.; Xu, W.H.; Lyu, X.L. Health effect of forest bathing trip on elderly patients with chronic obstructive pulmonary disease. Biomed. Environ. Sci. 2016, 29, 212–218. [Google Scholar]
- Mao, G.; Cao, Y.; Wang, B.; Wang, S.; Chen, Z.; Wang, J.; Xing, W.; Ren, X.; Lv, X.; Dong, J.; et al. The salutary influence of forest bathing on elderly patients with chronic heart failure. Int. J. Environ. Res. Public Health 2017, 14, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, G.X.; Cao, Y.B.; Yan, Y.; Chen, Z.M.; Dong, J.H.; Chen, S.S.; Wu, Q.; Lyu, X.L.; Jia, B.B.; Yan, J.; et al. Additive benefits of twice forest bathing trips in elderly patients with chronic heart failure. Biomed. Environ. Sci. 2018, 31, 159–162. [Google Scholar] [PubMed]
- Chun, M.H.; Chang, M.C.; Lee, S.J. The effects of forest therapy on depression and anxiety in patients with chronic stroke. Int. J. Neurosci. 2017, 127, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Hirano, H.; Kagawa, T.; Sato, M.; Miyazaki, Y. Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest)- using salivary cortisol and cerebral activity as indicators. J. Physiol. Anthropol. 2007, 26, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Tsunetsugu, Y.; Lee, J.; Park, B.J.; Tyrväinen, L.; Kagawa, T.; Miyazaki, Y. Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. Landsc. Urban Plan. 2013, 113, 90–93. [Google Scholar] [CrossRef]
- Park, B.J.; Tsunetsugu, Y.; Ishii, H.; Ishii, H.; Furuhashi, S.; Hirano, H.; Miyazaki, Y. Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest) in a mixed forest in Shinano Town, Japan. Scand. J. For. Res. 2008, 23, 278–283. [Google Scholar] [CrossRef]
- Lee, J.; Park, B.J.; Tsunetsugu, Y.; Ohira, T.; Kagawa, T.; Miyazaki, Y. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects. Public Health 2011, 125, 93–100. [Google Scholar] [CrossRef]
- Lee, J.; Park, B.J.; Tsunetsugu, Y.; Kagawa, T.; Miyazaki, Y. Restorative effects of viewing real forest landscapes, based on a comparison with urban landscapes. Scand. J. For. Res. 2009, 24, 227–234. [Google Scholar] [CrossRef]
- Nabi, H.; Kivimäki, M.; Batty, G.D.; Shipley, M.J.; Britton, A.; Brunner, E.J.; Vahtera, J.; Lemogne, C.; Elbaz, A.; Singh-Manoux, A. Increased risk of coronary heart disease among individuals reporting adverse impact of stress on their health: The Whitehall II prospective cohort study. Eur. Heart J. 2013, 34, 2697–2705. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.H.; Kim, C.; Seong, K.; Hur, M.H.; Lim, H.M.; Lee, M.S. Essential oil inhalation on blood pressure and salivary cortisol levels in prehypertensive and hypertensive subjects. Evid. Based Complement. Altern. Med. 2012, 2012, 984203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry 2015, 72, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Kremen, W.S.; Lachman, M.E.; Pruessner, J.C.; Sliwinski, M.; Wilson, R.S. Mechanisms of age-related cognitive change and targets for intervention: Social interactions and stress. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 760–765. [Google Scholar] [CrossRef] [Green Version]
- Kong, E.H.; Evans, L.K.; Guevara, J.P. Nonpharmacological intervention for agitation in dementia: A systematic review and meta-analysis. Aging Ment. Health 2009, 13, 512–520. [Google Scholar] [CrossRef]
- Motomura, N.; Sakurai, A.; Yotsuya, Y. Reduction of mental stress with lavender odorant. Percept. Mot. Skills 2001, 93, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kimura, T.; Hayashi, T. Aromatic effects of a Japanese citrus fruit-yuzu (Citrus junos Sieb. ex Tanaka)-on psychoemotional states and autonomic nervous system activity during the menstrual cycle: A single-blind randomized controlled crossover study. Biopsychosoc. Med. 2016, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Kimura, T.; Hayashi, T. Does Japanese citrus fruit yuzu (Citrus junos Sieb. ex Tanaka) fragrance have lavender-like therapeutic effects that alleviate premenstrual emotional symptoms? A single-blind randomized crossover Study. J. Altern. Complement. Med. 2017, 23, 461–470. [Google Scholar] [CrossRef]
- Yu, H.Y.; Park, S.W.; Chung, I.M.; Jung, Y.S. Anti-platelet effects of yuzu extract and its component. Food Chem. Toxicol. 2011, 49, 3018–3024. [Google Scholar] [CrossRef]
- Jung, D.J.; Cha, J.Y.; Kim, S.E.; Ko, I.G.; Jee, Y.S. Effects of Ylang-Ylang aroma on blood pressure and heart rate in healthy men. J. Exerc. Rehabil. 2013, 9, 250–255. [Google Scholar] [CrossRef]
- Anwar, S.; Ahmed, N.; Speciale, A.; Cimino, F.; Saija, A. Bitter orange (Citrus aurantium L.) oils. In Essential Oils in Food Preservation, Flavor and Safety, 2nd ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2016; pp. 259–267. [Google Scholar]
- Ilmberger, J.; Heuberger, E.; Mahrhofer, C.; Dessovic, H.; Kowarik, D.; Buchbauer, G. The influence of essential oils on human attention. I: Alertness. Chem. Sens. 2001, 26, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.Y.; Moyle, W.; Cooke, M. A randomized controlled trial of the use of aromatherapy and hand massage to reduce disruptive behaviour in people with dementia. BMC Complement. Altern. Med. 2013, 13, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.W.; Chan, W.C.; Ng, B.F.; Lam, L.C. Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviors in Chinese older persons with dementia: A cross-over randomized trial. Int. J. Geriatr. Psychiatry 2007, 22, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Takeda, A.; Watanuki, E.; Koyama, S. Effects of inhalation aromatherapy on symptoms of sleep disturbance in the elderly with dementia. Evid. Based Complement. Altern. Med. 2017, 2017, 1902807. [Google Scholar] [CrossRef] [PubMed]
- Afshar, M.K.; Moghadam, Z.B.; Taghizadeh, Z.; Bekhradi, R.; Montazeri, A.; Mokhtari, P. Lavender fragrance essential oil and the quality of sleep in postpartum women. Iran. Red Crescent Med. J. 2015, 17, e25880. [Google Scholar]
- Kianpour, M.; Mansouri, A.; Mehrabi, T.; Asghari, G. Effect of lavender scent inhalation on prevention of stress, anxiety and depression in the postpartum period. Iran. J. Nurs. Midwifery Res. 2016, 21, 197–201. [Google Scholar] [CrossRef]
- Diego, M.A.; Jones, N.A.; Field, T.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C.; McAdam, V.; Galamaga, R.; Galamaga, M. Aromatherapy positively affects mood, EEG patterns of alertness and math computations. Int. J. Neurosci. 1998, 96, 217–224. [Google Scholar] [CrossRef]
- Carvalho-Freitas, M.I.R.; Costa, M. Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biol. Pharm. Bull. 2002, 25, 1629–1633. [Google Scholar] [CrossRef] [Green Version]
- Toda, M.; Morimoto, K. Effect of lavender aroma on salivary endocrinological stress markers. Arch. Oral Biol. 2008, 53, 964–968. [Google Scholar] [CrossRef]
- Chamine, I.; Oken, B.S. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation. J. Altern. Complement. Med. 2016, 22, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Chaiyasut, C.; Sivamaruthi, B.S.; Wongwan, J.; Thiwan, K.; Rungseevijitprapa, W.; Klunkiln, A.; Kunaviktikul, W. Effects of Litsea cubeba (Lour.) Persoon Essential oil aromatherapy on mood states and salivary cortisol levels in healthy volunteers. Evid. Based Complement. Altern. 2020, 2020, 4389239. [Google Scholar] [CrossRef]
- Saunders, C. Care of the dying. CMAP 1963, 3, 77–82. [Google Scholar]
- Gagliese, L.; Melzack, R. Chronic pain in elderly people. Pain 1997, 70, 3–14. [Google Scholar] [CrossRef]
- Barlow, D.H. Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. Am. Psychol. 2000, 55, 1247–1263. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, F.; Molino-Lova, R.; Di Iorio, A.; Conti, A.A.; Mannoni, A.; Lauretani, F.; Benvenuti, E.; Bandinelli, S.; Macchi, C.; Ferrucci, L. Measures of physical performance capture the excess disability associated with hip pain or knee pain in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Ghorat, F.; Shahrestani, S.; Tagabadi, Z.; Bazghandi, M. The effect of inhalation of essential oils of Polianthes Tuberosa on test anxiety in students: A clinical trial. Iran. J. Med. Sci. 2016, 41, S13. [Google Scholar] [PubMed]
- Price, S. Aromatherapy for Common Ailments; Gaia Series; Fireside: London, UK, 1991; p. 66. [Google Scholar]
- Namazi, M.; Ali Akbari, S.A.; Mojab, F.; Talebi, A.; Majd, H.A.; Jannesari, S. Effects of Citrus aurantium (bitter orange) on the severity of first-stage labor pain. Iran. J. Pharm. Res. 2014, 13, 1011–1018. [Google Scholar] [PubMed]
- Yip, Y.B.; Tam, A.C. An experimental study on the effectiveness of massage with aromatic ginger and orange essential oil for moderate-to-severe knee pain among the elderly in Hong Kong. Complement. Ther. Med. 2008, 16, 131–138. [Google Scholar] [CrossRef]
- Rombolà, L.; Amantea, D.; Russo, R.; Adornetto, A.; Berliocchi, L.; Tridico, L.; Corasaniti, M.; Sakurada, S.; Sakurada, T.; Bagetta, G.; et al. Rational basis for the use of bergamot essential oil in complementary medicine to treat chronic pain. Mini Rev. Med. Chem. 2016, 16, 721–728. [Google Scholar] [CrossRef]
- Heydari, N.; Abootalebi, M.; Jamalimoghadam, N.; Kasraeian, M.; Emamghoreishi, M.; Akbarzadeh, M. Investigation of the effect of aromatherapy with Citrus aurantium blossom essential oil on premenstrual syndrome in university students: A clinical trial study. Complement. Ther. Clin. Pract. 2018, 32, 1–5. [Google Scholar] [CrossRef]
- Heydari, N.; Abootalebi, M.; Tayebi, N.; Hassanzadeh, F.; Kasraeian, M.; Emamghoreishi, M.; Akbarzadeh, M. The effect of aromatherapy on mental, physical symptoms, and social functions of females with premenstrual syndrome: A randomized clinical trial. J. Family Med. Prim. Care 2019, 8, 2990–2996. [Google Scholar]
- Choi, S.Y.; Kang, P.; Lee, H.S.; Seol, G.H. Effects of inhalation of essential oil of Citrus aurantium L. var. amara on menopausal symptoms, stress, and estrogen in postmenopausal women: A randomized controlled trial. Evid. Based Complement. Altern. Med. 2014, 2014, 796518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farshbaf-Khalili, A.; Kamalifard, M.; Namadian, M. Comparison of the effect of lavender and bitter orange on anxiety in postmenopausal women: A triple-blind, randomized, controlled clinical trial. Complement. Ther. Clin. Pract. 2018, 31, 132–138. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Kunaviktikul, W.; Klunklin, A.; Chanthapoon, C.; Chaiyasut, C. Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. Appl. Sci. 2022, 12, 4495. https://doi.org/10.3390/app12094495
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Kunaviktikul W, Klunklin A, Chanthapoon C, Chaiyasut C. Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. Applied Sciences. 2022; 12(9):4495. https://doi.org/10.3390/app12094495
Chicago/Turabian StyleThangaleela, Subramanian, Bhagavathi Sundaram Sivamaruthi, Periyanaina Kesika, Muruganantham Bharathi, Wipada Kunaviktikul, Areewan Klunklin, Chatnithit Chanthapoon, and Chaiyavat Chaiyasut. 2022. "Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review" Applied Sciences 12, no. 9: 4495. https://doi.org/10.3390/app12094495