Evaluation of Structural and Functional Behavior of Battery Charger for Low/High-Frequency Motions in NPP
Abstract
:1. Introduction
2. Test Specimen and Test Conditions
2.1. Test Specimen
2.2. Seismic Test Condition
2.2.1. Resonant-Frequency Test
2.2.2. Seismic Test
3. Test Results of Shaking Table Test
3.1. Resonant-Frequency Test
3.2. Seismic Test
4. Comparison of Response Depending on Input Motion
4.1. Structural-Response Evaluation
4.1.1. Peak Acceleration
4.1.2. Amplification Factor
4.2. In-Cabinet Response Evaluation
4.2.1. Peak Acceleration
4.2.2. Amplification Factor
4.3. Output Signal of Relay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US NRC Regulatory Guide 1.60, Design Response Spectra for Seismic Design of Nuclear Power Plants; US NRC: Washington, DC, USA, 1973.
- Lee, C.G. Earthquake Engineering Analysis of Ground Accelerations Measured in the 912 Gyeong-ju Earthquake. Mag. KSCE Spec. Feature 2017, 65, 8–13. (In Korean) [Google Scholar]
- EPRI. Program on Technology Innovation: Seismic Screening of Components Sensitive to High-Frequency Vibratory Motions; Report 1015109; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2007. [Google Scholar]
- Rustogi, S.; Gupta, A. Modeling the dynamic behavior of electrical cabinets and control panels: Experimental and analytical results. J. Struct. Eng. 2004, 130, 511–519. [Google Scholar] [CrossRef]
- Ries, M.; Hah, T.; Henkel, F.O. Seismic qualification of an electrical cabinet: Comparison of analysis and test results. In Proceedings of the 24th Conference on Structural Mechanics in Reactor Technology (SMiRT-24), Busan, Korea, 20–25 August 2017. [Google Scholar]
- Jeon, B.-G.; Son, H.-Y.; Eem, S.-H.; Choi, I.-K.; Ju, B.-S. Dynamic characteristics of single door electrical cabinet under rocking: Source reconciliation of experimental and numerical findings. Nucl. Eng. Technol. 2021, 53, 2387–2395. [Google Scholar] [CrossRef]
- Cho, S.G.; Kim, D.; Chaudhary, S. A simplified model for nonlinear seismic response analysis of equipment cabinets in nuclear power plants. Nucl. Eng. Des. 2011, 241, 2750–2757. [Google Scholar] [CrossRef]
- Son, H.; Park, S.; Jeong, B.-G.; Jung, W.-Y.; Choi, J.; Ju, B.-S. Seismic Qualification of Electrical Cabinet Using High-Fidelity Simulation under High Frequency Earthquakes. Sustainability 2022, 12, 8048. [Google Scholar] [CrossRef]
- Tran, T.T.; Cao, A.T.; Nguyen, T.H.X.; Kim, D.K. Fragility assessment for electric cabinet in nuclear power plant using response surface methodology. Nucl. Eng. Technol. 2019, 51, 894–903. [Google Scholar] [CrossRef]
- Kim, M.K.; Choi, I.K.; Seo, J.M. A shaking table test for an evaluation of seismic behavior of 480V MCC. Nucl. Eng. Des. 2012, 243, 341–355. [Google Scholar] [CrossRef]
- Chang, S.-J.; Jeong, Y.-S.; Eem, S.-H.; Choi, I.-K.; Park, D.-U. Evaluation of MCC seismic response according to the frequency contents through the shake table test. Nucl. Eng. Technol. 2021, 53, 1345–1356. [Google Scholar] [CrossRef]
- Richards, J.; Merz, K.; Hardy, G. High frequency seismic testing of potentially sensitivity components. In Proceedings of the 23rd Conference on Structural Mechanics in Reactor Technology (SMiRT-23), Manchester, UK, 10–14 August 2015. [Google Scholar]
- Tseng, Y.D.; Chang, W.G.; Gau, T.C. A relay fragility test experience of nuclear power plant in Taiwan. In Proceedings of the 23rd Conference on Structural Mechanics in Reactor Technology (SMiRT-23), Manchester, UK, 10–14 August 2015. [Google Scholar]
- Korea Atomic Energy Research Institute. Analysis of Component Reliability of Korean Standard Nuclear Power Plants; KAERI/TR-2749; Korea Atomic Energy Research Institute: Daejeon, Korea, 2004. (In Korean) [Google Scholar]
- Rhee, H.M.; Kim, M.K.; Sheen, D.H.; Chol, I.K. Analysis of Uniform Hazard Spectra for Metropolises in the Korean Peninsula. J. Earthq. Eng. Soc. Korea 2013, 17, 71–77. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E. Dynamic Amplification of Electrical Cabinets, NUREG/CR-5203; Brookhaven National Laboratory (BNL): Upton, NY, USA, 1998.
- IEEE C37.98; IEEE Standard for Seismic Qualification Testing of Protective Relays and Auxiliaries for Nuclear Facilities. IEEE: New York, NY, USA, 2013.
Battery Charger | Dimensions (mm) | Weight (kN) | ||
---|---|---|---|---|
Width | Length | Height | ||
125 V DC 600 A | 920 | 1600 | 2215 | 170 |
Test No. | Earthquake Motion (PGA) | Remarks |
---|---|---|
1 | Modal test | Resonant-frequency verification (S-S, F-B, vertical) |
2 | UHS (0.2 g) SSE level | Uniform hazard spectrum (3D input) |
3 | Modal test | Resonant-frequency verification (S-S, F-B, vertical) |
4 | RG 1.60 (0.2 g) SSE level | NRC RG 1.60 (3D input) |
5 | Modal test | Resonant-frequency verification (S-S, F-B, vertical) |
6 | CRS (0.2 g) SSE level | Combined response spectrum (3D input) |
7 | Modal test | Resonant-frequency verification (S-S, F-B, vertical) |
8 | CRS (0.47 g) HCLPF level | Combined response spectrum (3D input) |
9 | Modal test | Resonant-frequency verification (S-S, F-B, vertical) |
10 | CRS (0.75 g) Fragility 10% level | Combined response spectrum (3D input) |
11 | Modal test | Resonant-frequency verification (S-S, F-B, vertical) |
Test No. | Structural Response | In-Cabinet Response | |||||||
---|---|---|---|---|---|---|---|---|---|
A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
1 | N/A | 12.25 | 12.50 | 12.50 | 12.50 | 39.00 | 12.50 | 12.50 | 12.50 |
3 | N/A | 12.25 | 12.50 | 12.50 | 12.50 | 33.00 | 12.50 | 12.50 | 12.50 |
5 | N/A | 12.25 | 12.50 | 12.50 | 12.50 | 33.25 | 12.50 | 12.50 | 12.50 |
7 | N/A | 12.25 | 12.50 | 12.50 | 12.50 | 33.25 | 12.50 | 12.50 | 12.50 |
9 | N/A | 12.00 | 12.00 | 12.00 | 12.25 | 29.50 | 12.00 | 12.25 | 12.25 |
11 | N/A | 11.25 | 11.25 | 11.25 | 11.25 | 24.25 | 11.25 | 11.25 | 11.25 |
Test No. | Structural Response | In-Cabinet Response | |||||||
---|---|---|---|---|---|---|---|---|---|
A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
1 | N/A | N/A | 29.25 | 29.25 | 29.25 | 16.50 | 20.25 | 20.25 | 20.25 |
3 | N/A | N/A | 29.50 | 29.50 | 29.50 | 15.50 | 20.50 | 20.50 | 20.50 |
5 | N/A | N/A | 28.75 | 29.25 | 29.50 | 15.25 | 20.50 | 20.25 | 20.25 |
7 | N/A | N/A | 29.00 | 29.00 | 29.75 | 15.50 | 20.50 | 20.25 | 20.50 |
9 | N/A | N/A | 29.00 | 29.00 | 29.00 | 13.75 | 20.25 | 20.25 | 20.25 |
11 | N/A | N/A | 28.25 | 28.25 | 28.25 | 12.50 | 19.75 | 19.75 | 19.75 |
Test No. | Structural Response | In-Cabinet Response | |||||||
---|---|---|---|---|---|---|---|---|---|
A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
1 | N/A | N/A | N/A | N/A | N/A | 53.00 | N/A | N/A | N/A |
3 | N/A | N/A | N/A | N/A | N/A | 52.25 | N/A | N/A | N/A |
5 | N/A | N/A | N/A | N/A | N/A | 53.00 | N/A | N/A | N/A |
7 | N/A | N/A | N/A | N/A | N/A | 51.00 | N/A | N/A | N/A |
9 | N/A | N/A | N/A | N/A | N/A | 46.75 | N/A | N/A | N/A |
11 | N/A | N/A | N/A | N/A | N/A | 33.25 | N/A | N/A | N/A |
Test Motion | Range (Hz) | Side to Side | Front to Back | Vertical | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A7 | A8 | A9 | A10 | A7 | A8 | A9 | A10 | A7 | A8 | A9 | A10 | ||
UHS (0.2 g) | 4–16 | 1.26 | 4.98 | 6.47 | 8.32 | 9.32 | 1.55 | 1.68 | 1.48 | 1.98 | 1.08 | 1.04 | 1.16 |
16–40 | 5.12 | 0.82 | 0.78 | 1.40 | 9.81 | 3.84 | 5.95 | 4.45 | 2.61 | 1.27 | 1.22 | 1.34 | |
40– | 4.77 | 1.57 | 1.44 | 0.91 | 0.87 | 7.31 | 22.4 | 3.28 | 17.0 | 1.65 | 2.04 | 1.58 | |
RG 1.60 (0.2 g) | 4–16 | 1.27 | 5.37 | 6.90 | 8.96 | 8.48 | 4.48 | 3.12 | 1.45 | 1.29 | 1.07 | 1.04 | 1.18 |
16–40 | 5.23 | 0.90 | 0.91 | 1.59 | 5.51 | 3.40 | 6.84 | 2.99 | 2.32 | 1.21 | 1.16 | 1.09 | |
40– | 3.20 | 2.12 | 1.40 | 0.79 | 0.65 | 7.50 | 22.2 | 2.56 | 5.52 | 1.24 | 1.55 | 1.93 | |
CRS (0.2 g) | 4–16 | 1.24 | 5.16 | 6.59 | 8.54 | 10.7 | 1.59 | 1.73 | 1.63 | 1.39 | 1.29 | 1.08 | 1.16 |
16–40 | 10.0 | 1.56 | 1.53 | 1.42 | 7.28 | 3.48 | 4.97 | 3.35 | 2.42 | 1.26 | 1.24 | 1.27 | |
40– | 3.11 | 1.56 | 1.28 | 0.88 | 0.84 | 7.18 | 20.7 | 1.99 | 7.44 | 1.25 | 2.11 | 1.72 | |
CRS (0.47 g) | 4–16 | 1.57 | 4.07 | 5.21 | 6.74 | 7.10 | 1.60 | 1.70 | 1.57 | 1.35 | 1.23 | 1.24 | 1.17 |
16–40 | 10.7 | 2.17 | 2.09 | 1.28 | 4.28 | 3.68 | 5.93 | 3.69 | 3.11 | 1.79 | 1.94 | 1.20 | |
40– | 4.16 | 3.63 | 3.39 | 1.08 | 3.06 | 4.63 | 16.7 | 1.76 | 5.36 | 3.44 | 2.83 | 1.69 | |
CRS (0.75 g) | 4–16 | 2.43 | 3.70 | 4.94 | 6.04 | 2.08 | 1.61 | 1.99 | 1.64 | 1.42 | 1.83 | 1.31 | 1.40 |
16–40 | 8.61 | 2.78 | 3.57 | 1.34 | 6.65 | 7.12 | 7.89 | 4.09 | 3.26 | 3.10 | 2.10 | 1.60 | |
40– | 6.03 | 6.38 | 5.55 | 3.14 | 9.61 | 10.4 | 15.1 | 3.04 | 5.36 | 7.11 | 7.46 | 4.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.-S.; Eem, S.-H.; Jeon, B.-G.; Park, D.-U. Evaluation of Structural and Functional Behavior of Battery Charger for Low/High-Frequency Motions in NPP. Appl. Sci. 2022, 12, 4328. https://doi.org/10.3390/app12094328
Jeong Y-S, Eem S-H, Jeon B-G, Park D-U. Evaluation of Structural and Functional Behavior of Battery Charger for Low/High-Frequency Motions in NPP. Applied Sciences. 2022; 12(9):4328. https://doi.org/10.3390/app12094328
Chicago/Turabian StyleJeong, Young-Soo, Seung-Hyun Eem, Bub-Gyu Jeon, and Dong-Uk Park. 2022. "Evaluation of Structural and Functional Behavior of Battery Charger for Low/High-Frequency Motions in NPP" Applied Sciences 12, no. 9: 4328. https://doi.org/10.3390/app12094328
APA StyleJeong, Y.-S., Eem, S.-H., Jeon, B.-G., & Park, D.-U. (2022). Evaluation of Structural and Functional Behavior of Battery Charger for Low/High-Frequency Motions in NPP. Applied Sciences, 12(9), 4328. https://doi.org/10.3390/app12094328