Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. Models and Methods
Code 1. Keras/Python kernel of the proposed model. |
def sampling(args): z_mean, z_var = args epsilon = K.random_normal(shape=(1, latent_dim), mean=0., stddev=1) return z_mean + K.exp(z_var) * epsilon def euclidean(args): movie_v, user_v = args return K.sqrt(K.sum(K.square(movie_v - user_v), axis=−1)) def variational_Euclidean(latent_dim): user_input = Input(shape=[1]) user_embedding = Embedding(num_users + 1, latent_dim)(user_input) user_embedding_mean = Dense(latent_dim) (user_embedding) user_embedding_var = Dense(latent_dim) (user_embedding) user_embedding_z = Lambda(sampling) ([user_embedding_mean, user_embedding_var]) user_vec = Flatten()(user_embedding_z) movie_input = Input(shape=[1]) movie_embedding = Embedding(num_movies + 1, latent_dim)(movie_input) movie_embedding_mean = Dense(latent_dim) (movie_embedding) movie_embedding_var = Dense(latent_dim) (movie_embedding) movie_embedding_z = Lambda(sampling) ([movie_embedding_mean, movie_embedding_var], latent_dim) movie_vec = Flatten()(movie_embedding_z) similar = Lambda(euclidean)([movie_vec, user_vec]) var_eucl_pred = Model([user_input, movie_input], similar) var_eucl_user = Model(user_input, user_vec) var_eucl_item = Model(movie_input, movie_vec) return var_eucl_pred, var_eucl_user, var_eucl_item |
3. Experiments and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batmaz, Z.; Yurekli, A.; Bilge, A.; Kaleli, C. A review on deep learning for recommender systems: Challenges and remedies. Artif. Intell. Rev. 2019, 52, 1–37. [Google Scholar] [CrossRef]
- Bobadilla, J.; González-Prieto, Á.; Ortega, F.; Cabrera, L. Deep learning feature selection to unhide demographic recommender systems factors. Neural Comput. Appl. 2020, 33, 7291–7308. [Google Scholar] [CrossRef]
- Deldjoo, Y.; Schedl, M.; Cremonesi, P.; Pasi, G. Recommender Systems Leveraging Multimedia Content. ACM Comput. Surv. 2021, 53, 1–38. [Google Scholar] [CrossRef]
- Saurabh, K.; Sunil, F.R. Context Aware Recommendation Systems: A review of the state of the art techniques. Comput. Sci. Rev. 2020, 37, 100255. [Google Scholar] [CrossRef]
- Shokeen, J.; Rana, C. A study on features of social recommender systems. Artif. Intell. Rev. 2020, 53, 965–988. [Google Scholar] [CrossRef]
- Bobadilla, J.; Alonso, S.; Hernando, A. Deep Learning Architecture for Collaborative Filtering Recommender Systems. Appl. Sci. 2020, 10, 2441. [Google Scholar] [CrossRef] [Green Version]
- Forouzandeh, S.; Berahmand, K.; Rostami, M. Presentation of a recommender system with ensemble learning and graph embedding: A case on MovieLens. Multimed. Tools Appl. 2021, 80, 7805–7832. [Google Scholar] [CrossRef]
- Zhu, B.; Hurtado, R.; Bobadilla, J.; Ortega, F. An Efficient Recommender System Method Based on the Numerical Relevances and the Non-Numerical Structures of the Ratings. IEEE Access 2018, 6, 49935–49954. [Google Scholar] [CrossRef]
- Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems 21; Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; MIT Press: Cambridge, MA, USA, 2008; pp. 1257–1264. [Google Scholar]
- Lee, D.D.; Seung, H.S. Algorithms for Non-negative Matrix Factorization. In Advances in Neural Information Processing Systems 13; Leen, T.K., Dietterich, T.G., Tresp, V., Eds.; MIT Press: Cambridge, MA, USA, 2001; pp. 556–562. [Google Scholar]
- Hernando, A.; Bobadilla, J.; Ortega, F. A non negative matrix factorization for Collaborative Filtering Recommender Systems based on a Bayesian probabilistic model. Knowl.-Based Syst. 2016, 97, 188–202. [Google Scholar] [CrossRef]
- Hernando, A.; Moya, R.; Ortega, F.; Bobadilla, J. Hierarchical graph maps for visualization of collaborative recommender systems. J. Inf. Sci. 2014, 40, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Hernando, A.; Bobadilla, J.; Ortega, F.; Gutiérrez, A. Method to interactively visualize and navigate related information. Expert Syst. Appl. 2018, 111, 61–75. [Google Scholar] [CrossRef]
- Hong-Jian, X.; Xinyu, D.; Jianbing, Z.; Shujian, H.; Jiajun, C. Deep Matrix Factorization Models for Recommender Systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 3203–3209. [Google Scholar] [CrossRef] [Green Version]
- Xiangnan, H.; Lizi, L.; Hanwang, Z. Neural Collaborative Filtering. In Proceedings of the International World Wide Web Conference, Perth, Australia, 3–7 April 2017; ACM: New York, NY, USA, 2017. ISBN 978-1-4503-4913-0/17/04. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A Survey on Network Embedding. IEEE Trans. Knowl. Data Eng. 2019, 31, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.; Song, D.; Liao, L. Knowledge graph embedding with concepts. Knowl.-Based Syst. 2019, 164, 38–44. [Google Scholar] [CrossRef]
- Zou, Q.; Xing, P.; Wei, L.; Liu, B. Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-Methyladenosine Sites from mRNA. RNA 2018, 25, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Y.; Zhen, W.; Jingong, H.; Srinivasan, P.; Moosavinasab, S.; Huang, Y.; Lin, S.M.; Zhang, W.; Zhang, P.; Sun, H. Graph embedding on biomedical networks: Methods, applications and evaluations. Bioinformatics 2020, 36, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Škrlj, B.; Kralj, J.; Lavrač, N. Embedding-based Silhouette community detection. Mach. Learn. 2020, 109, 2161–2193. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, Y.; Lu, H.; Yang, Y. Pose-Invariant Embedding for Deep Person Re-Identification. IEEE Trans. Image Proces. 2019, 28, 4500–4509. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tang, J.; Mei, T. Deep Collaborative Embedding for Social Image Understanding. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2070–2083. [Google Scholar] [CrossRef]
- Kan, S.; Cen, Y.; He, Z.; Zhang, Z.; Zhang, L.; Wang, Y. Supervised Deep Feature Embedding with Handcrafted Feature. IEEE Trans. Image Process. 2019, 28, 5809–5823. [Google Scholar] [CrossRef]
- Shuang, K.; Zhang, Z.; Loo, J.; Su, S. Convolution–deconvolution word embedding: An end-to-end multi-prototype fusion embedding method for natural language processing. Inf. Fusion 2020, 53, 112–122. [Google Scholar] [CrossRef]
- Bobadilla, J.; Lara-Cabrera, R.; González-Prieto, A.; Ortega, F. DeepFair: Deep Learning for Improving Fairness in Recommender Systems. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 86–94. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, D.; Bi, L. Neural embedding collaborative filtering for recommender systems. Neural Comput. Applic. 2020, 32, 17043–17057. [Google Scholar] [CrossRef]
- Fuzheng, Z.; Nicholas, J.Y.; Defu, L.; Xing, X.; Wei-Ying, M. Collaborative Knowledge Base Embedding for Recommender Systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; pp. 353–362. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Kim, Y.-K. Deep Learning-Based Context-Aware Recommender System Considering Contextual Features. Appl. Sci. 2022, 12, 45. [Google Scholar] [CrossRef]
- Chih-Ming, C.; Chuan-Ju, W.; Ming-Feng, T.; Yi-Hsuan, Y. Collaborative Similarity Embedding for Recommender Systems. In Proceedings of the The World Wide Web Conference (WWW ’19), San Francisco, CA, USA, 13–17 May 2019; pp. 2637–2643. [Google Scholar] [CrossRef] [Green Version]
- Heng-Tze, C.; Levent, K.; Jeremiah, H.; Tal, S.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems (DLRS 2016), Boston, MA, USA, 15 September 2016; pp. 7–10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.X.; Huang, J.; Wen, J.R. Learning Distributed Representations for Recommender Systems with a Network Embedding Approach. In Proceedings of the Information Retrieval Technology (AIRS 2016), Beijing, China, 30 November–2 December 2016; Lecture Notes in Computer Science 9994. Springer: Berlin/Heidelberg, Germany, 2016; pp. 224–236. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, L.; Wang, Y.; Shah, C.; Zhang, X. Collaborative User Network Embedding for Social Recommender Systems. In Proceedings of the 2017 SIAM International Conference on Data Mining (SDM), Houston, TX, USA, 27–29 April 2017; pp. 381–389. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, X.; Wang, C.; Liu, X.; Tang, J. Automated Embedding Size Search in Deep Recommender Systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Online, 25–30 July 2020; pp. 2307–2316. [Google Scholar] [CrossRef]
- Bobadilla, J.; Gutierrez, A.; Alonso, S.; González-Prieto, A. Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities. Int. J. Interact. Multimed. Artif. Intell. 2021. [Google Scholar] [CrossRef]
- Liu, X.; Gherbi, A.; Wei, Z.; Li, W.; Cheriet, M. Multispectral Image Reconstruction from Color Images Using Enhanced Variational Autoencoder and Generative Adversarial Network. IEEE Access 2021, 9, 1666–1679. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Siu, W.-C.; Wang, L.-W.; Li, C.-T.; Cani, M.-P.; Chan, Y. Unsupervised Real Image Super-Resolution via Generative Variational AutoEncoder. In Proceedings of the EEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1788–1797. [Google Scholar] [CrossRef]
- Liu, Z.-S.; Siu, W.-C.; Chan, Y.-L. Photo-Realistic Image Super-Resolution via Variational Autoencoders. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1351–1365. [Google Scholar] [CrossRef]
- Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–19. [Google Scholar] [CrossRef]
- Ortega, F.; Zhu, B.; Bobadilla, J.; Hernando, A. CF4J: Collaborative filtering for Java. Knowl.-Based Syst. 2018, 152, 94–99. [Google Scholar] [CrossRef]
Dataset | #Users | #Items | #Ratings | Scores | Sparsity |
---|---|---|---|---|---|
Movielens 100K | 943 | 1682 | 99,831 | 1 to 5 | 93.71 |
MovieLens 1M | 6040 | 3706 | 911,031 | 1 to 5 | 95.94 |
Netflix* | 23,012 | 1750 | 535,421 | 1 to 5 | 98.68 |
Dataset\Embedding Size | Mean Absolute Error (MAE) | Achieved Accuracy | |||
---|---|---|---|---|---|
2 | 3 | 5 | 10 | ||
Movielens 100K | 0.7355 | 0.7368 | 0.7297 | 0.7213 | 98.04% |
MovieLens 1M | 0.6927 | 0.6875 | 0.6839 | 0.6801 | 98.15% |
Netflix* | 0.7260 | 0.7250 | 0.7248 | 0.7243 | 99.76% |
Embedding Dataset/Model | Users | Items | ||||
---|---|---|---|---|---|---|
Proposed | Baseline | Improv. | Proposed | Baseline | Improv. | |
Movielens 100K | 0.8317 | 0.4789 | 73.66% | 0.8943 | 0.6346 | 40.92% |
MovieLens 1M | 0.8289 | 0.5552 | 49.29% | 0.9762 | 0.7372 | 32.42% |
Netflix* | 0.8790 | 0.4572 | 92.25% | 0.9160 | 0.8569 | 6.90% |
# Layers | 5 |
# Neurons in each non-exit layer | Experiment #1: {2, 3, 5, 10}, Experiments #2 and #3: {2} |
# Epochs | 20 |
Batch size | 16 |
Activation function of the non-exit layers | ReLu |
Activation function of the exit layer | Linear |
Loss function | Euclidean distance |
Gaussian random distribution | Mean: 0, Variance: 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobadilla, J.; Dueñas, J.; Gutiérrez, A.; Ortega, F. Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems. Appl. Sci. 2022, 12, 4168. https://doi.org/10.3390/app12094168
Bobadilla J, Dueñas J, Gutiérrez A, Ortega F. Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems. Applied Sciences. 2022; 12(9):4168. https://doi.org/10.3390/app12094168
Chicago/Turabian StyleBobadilla, Jesús, Jorge Dueñas, Abraham Gutiérrez, and Fernando Ortega. 2022. "Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems" Applied Sciences 12, no. 9: 4168. https://doi.org/10.3390/app12094168
APA StyleBobadilla, J., Dueñas, J., Gutiérrez, A., & Ortega, F. (2022). Deep Variational Embedding Representation on Neural Collaborative Filtering Recommender Systems. Applied Sciences, 12(9), 4168. https://doi.org/10.3390/app12094168