Performance-Driven Yield Optimization of High-Frequency Structures by Kriging Surrogates
Abstract
:1. Introduction
2. Yield Optimization Problem and Benchmark Algorithms
2.1. Yield Optimization Problem
2.2. Yield Optimization. Benchmark Surrogate-Assisted Algorithms
3. Surrogate-Based Yield Optimization with Domain Confinement
3.1. Yield Optimization of Multi-Band Antennas
3.2. Yield Optimization of Microwave Couplers
4. Demonstration Case Studies
4.1. Case I: Ring-Slot Antenna
4.2. Case IV: Compact Microstrip Rat-Race Coupler
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biernacki, R.; Chen, S.; Estep, G.; Rousset, J.; Sifri, J. Statistical analysis and yield optimization in practical RF and microwave systems. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Liang, J.F.; Chang, H.C.; Zaki, K.A. Design and tolerance analysis of thick iris waveguide bandpass filters. IEEE Trans. Magn. 1993, 29, 1605–1609. [Google Scholar] [CrossRef]
- Hassan, A.S.O.; Abdel-Malek, H.L.; Mohamed, A.S.A.; Abuelfadl, T.M.; Elqenawy, A.E. Statistical design centering of RF cavity linear accelerator via non-derivative trust region optimization. In Proceedings of the 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Ottawa, ON, Canada, 11–14 August 2015; pp. 1–3. [Google Scholar]
- Koziel, S.; Bandler, J.; Mohamed, A.; Madsen, K. Enhanced surrogate models for statistical design exploiting space mapping technology. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2015; pp. 1–4. [Google Scholar]
- Syrytsin, I.; Zhang, S.; Pedersen, G.F.; Zhao, K.; Bolin, T.; Ying, Z. Statistical investigation of the user effects on mobile terminal antennas for 5G applications. IEEE Trans. Ant. Prop. 2017, 65, 6596–6605. [Google Scholar] [CrossRef] [Green Version]
- Leifsson, L.; Du, X.; Koziel, S. Efficient yield estimation of multi-band patch antennas by polynomial chaos-based kriging. Int. J. Numer. Modeling. 2020, 66, e2722. [Google Scholar]
- Prasad, A.K.; Ahadi, M.; Roy, S. Multidimensional uncertainty quantification of microwave/RF networks using linear regression and optimal design of experiments. IEEE Trans. Microw. Theory Tech. 2016, 64, 2433–2446. [Google Scholar] [CrossRef]
- Kim, D.W.; Choi, N.S.; Lee, C.U.; Kim, D.H. Assessment of statistical moments of a performance function for robust design of electromagnetic devices. IEEE Trans. Magn. 2015, 51, 7205104. [Google Scholar] [CrossRef]
- Budimir, D.; Goussetis, G. Design of asymmetrical RF and microwave bandpass filters by computer optimization. IEEE Trans. Microw. Theory Tech. 2003, 51, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
- Koziel, S.; Pietrenko-Dabrowska, A. Global EM-driven optimization of multi-band antennas using knowledge-based inverse response-feature surrogates. Knowl.-Based Syst. 2021, 227, 107189. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Tolerance-aware multi-objective optimization of antennas by means of feature-based regression surrogates. IEEE Trans. Ant. Prop. 2022. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Design centering of compact microwave components using response features and trust regions. Energies 2021, 14, 8550. [Google Scholar] [CrossRef]
- Vidal, B.; Corral, J.L.; Marti, J. Statistical analysis of WDM photonic microwave filters with random errors. IEEE Trans. Microw. Theory Techn. 2005, 53, 2600–2603. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Duan, B.; Yang, Y.; Zhang, Y.; Fang, J. Performance of planar arrays for microwave power transmission with position errors. IEEE Ant. Wirel. Prop. Lett. 2015, 14, 1794–1797. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, Y.; Huang, Y.M.; Ding, S.; Wu, K. Miniaturized broadband coupler made of slow-wave half-mode substrate integrated waveguide. IEEE Microw. Wirel. Comp. Lett. 2017, 27, 132–134. [Google Scholar] [CrossRef]
- Wu, H.W.; Chiu, C.T. Design of compact multi-layered quad-band bandpass filter. IEEE Microw. Wirel. Comp. Lett. 2016, 26, 879–881. [Google Scholar] [CrossRef]
- Firmansyah, T.; Alaydrus, M.; Wahyu, Y.; Rahardjo, E.T.; Wibisono, G. A highly independent multiband bandpass filter using a multi-coupled line stub-SIR with folding structure. IEEE Access 2020, 8, 83009–83026. [Google Scholar] [CrossRef]
- Chen, S.; Guo, M.; Xu, K.; Zhao, P.; Dong, L.; Wang, G. A frequency synthesizer based microwave permittivity sensor using CMRC structure. IEEE Access 2018, 6, 8556–8563. [Google Scholar] [CrossRef]
- Sengupta, M.; Saxena, S.; Daldoss, L.; Kramer, G.; Minehane, S.; Cheng, J. Application-specific worst case corners using response surfaces and statistical models. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 2005, 24, 1372–1380. [Google Scholar] [CrossRef]
- Zhang, B.; Rahmat-Samii, Y. Robust optimization with worst case sensitivity analysis applied to array synthesis and antenna designs. IEEE Trans. Ant. Prop. 2018, 66, 160–171. [Google Scholar] [CrossRef]
- Shen, H.; Xu, W.; Wang, J.; Zhao, C. A worst-case robust beamforming design for multi-antenna AF relaying. IEEE Comm. Lett. 2013, 17, 713–716. [Google Scholar] [CrossRef]
- Ma, B.; Lei, G.; Liu, C.; Zhu, J.; Guo, Y. Robust tolerance design optimization of a PM claw pole motor with soft magnetic composite cores. IEEE Trans. Magn. 2018, 54, 8102404. [Google Scholar] [CrossRef]
- Ren, Z.; He, S.; Zhang, D.; Zhang, Y.; Koh, C.S. A possibility-based robust optimal design algorithm in preliminary design state of electromagnetic devices. IEEE Trans. Magn. 2016, 52, 7001504. [Google Scholar] [CrossRef]
- Matoglu, E.; Pham, N.; De Araujo, D.; Cases, M.; Swaminathan, M. Statistical signal integrity analysis and diagnosis methodology for high-speed systems. IEEE Trans. Adv. Packag. 2004, 27, 611–629. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.J.; Wood, J. Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices. IEEE Trans. Microw. Theory Tech. 2008, 56, 2453–2467. [Google Scholar] [CrossRef]
- Kim, D.; Kim, M.; Kim, W. Wafer edge yield prediction using a combined long short-term memory and feed- forward neural network model for semiconductor manufacturing. IEEE Access 2020, 8, 215125–215132. [Google Scholar] [CrossRef]
- Du, J.; Roblin, C. Statistical modeling of disturbed antennas based on the polynomial chaos expansion. IEEE Ant. Wirel. Prop. Lett. 2017, 16, 1843–1847. [Google Scholar] [CrossRef]
- Rossi, M.; Dierck, A.; Rogier, H.; Vande Ginste, D. A stochastic framework for the variability analysis of textile antennas. IEEE Trans. Ant. Prop. 2014, 62, 6510–6514. [Google Scholar] [CrossRef] [Green Version]
- Petrocchi, A.; Kaintura, A.; Avolio, G.; Spina, D.; Dhaene, T.; Raffo, A.; Schreurs, D.M. Measurement uncertainty propagation in transistor model parameters via polynomial chaos expansion. IEEE Microw. Wirel. Comp. Lett. 2017, 27, 572–574. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, H.; Yu, Y.; Jiang, F.; Cheng, Q.S. Yield-constrained optimization design using polynomial chaos for microwave filters. IEEE Access 2021, 9, 22408–22416. [Google Scholar] [CrossRef]
- Klink, D.; Meyer, P.; Steyn, W. Efficient yield estimation of multiband patch antennas using NLPLS-based PCE. IEEE Trans. Ant. Prop. 2022. [Google Scholar] [CrossRef]
- Klink, D.; Meyer, P. A comparison of techniques for finding coefficients of polynomial chaos models for antenna problems. Int. J. RF Microw. Comput. Aided. Eng. 2021, 31, e22729. [Google Scholar] [CrossRef]
- Boeykens, F.; Rogier, H.; Vallozzi, L. An efficient technique based on polynomial chaos to model the uncertainty in the resonance frequency of textile antennas due to bending. IEEE Trans. Ant. Prop. 2014, 62, 1253–1260. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Z.; Cao, R.; Wang, J.; Yan, Y. RCA-PCK: A new structural reliability analysis method based on PC-Kriging and radial centralized adaptive sampling strategy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 3424–3438. [Google Scholar] [CrossRef]
- Schobi, R.; Sudret, B.; Wiart, J. Polynomial-chaos-based kriging. Int. J. Uncertain. Quantif. 2015, 5, 171–193. [Google Scholar] [CrossRef]
- Ochoa, J.S.; Cangellaris, A.C. Random-space dimensionality reduction for expedient yield estimation of passive microwave structures. IEEE Trans. Microw. Theory Tech. 2013, 61, 4313–4321. [Google Scholar] [CrossRef]
- Rayas-Sanchez, J.E.; Gutierrez-Ayala, V. EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping. IEEE Trans. Microw. Theory Tech. 2006, 54, 4528–4537. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, F.; Na, W.; Yan, S.; Zhang, Q. Parallel space-mapping based yield-driven EM optimization incorporating trust region algorithm and polynomial chaos expansion. IEEE Access 2019, 7, 143673–143683. [Google Scholar] [CrossRef]
- Zhang, C.; Na, W.; Zhang, Q.J.; Bandler, J.W. Fast yield estimation and optimization of microwave filters using a cognition-driven formulation of space mapping. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Hassan, A.-K.S.; Mohamed, A.S.; El-Sharabasy, A.Y. EM-based yield optimization exploiting trust-region optimization and space mapping technology. Int. J. RF Microw. Comp. Aid. Eng. 2015, 25, 474–484. [Google Scholar] [CrossRef]
- Kennedy, M.C.; O’Hagan, A. Predicting the output from complex computer code when fast approximations are available. Biometrika 2000, 87, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, J.-P.; Dompierre, B.; Robert, A.; Le Bihan, M.; Wyart, E.; Sainvitu, C. Failure probability assessment using co-kriging surrogate models. Procedia Eng. 2015, 133, 622–630. [Google Scholar] [CrossRef]
- Spina, D.; Ferranti, F.; Antonini, G.; Dhaene, T.; Knockaert, L. Efficient variability analysis of electromagnetic systems via polynomial chaos and model order reduction. IEEE Trans. Comp. Packag. Manuf. Tech. 2014, 4, 1038–1051. [Google Scholar] [CrossRef] [Green Version]
- Kouassi, A.; Nguyen-Trong, N.; Kaufmann, T.; Lallechere, S.; Bonnet, P.; Fumeaux, C. Reliability-aware optimization of a wideband antenna. IEEE Trans. Ant. Prop. 2016, 64, 450–460. [Google Scholar] [CrossRef]
- Scotti, G.; Tommasino, P.; Trifiletti, A. MMIC yield optimization by design centering and off-chip controllers. IET Proc.-Circuits Devices Syst. 2005, 152, 54–60. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, F.; Jin, J.; Zhang, W.; Zhao, Z.; Zhang, Q.J. Adaptively weighted yield-driven EM optimization incorporating neurotransfer function surrogate with applications to microwave filters. IEEE Trans. Microw. Theory Tech. 2021, 69, 518–528. [Google Scholar] [CrossRef]
- Zhang, J.; Na, W.; Feng, F. Yield-driven EM optimization exploiting parallel computation and EM sensitivities. In Proceedings of the 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT), Tianjin, China, 29 August–1 September 2020; pp. 1–3. [Google Scholar]
- Abdel-Malek, H.L.; Hassan, A.S.O.; Soliman, E.A.; Dakroury, S.A. The ellipsoidal technique for design centering of microwave circuits exploiting space-mapping interpolating surrogates. IEEE Trans. Microw. Theory Tech. 2006, 54, 3731–3738. [Google Scholar] [CrossRef]
- Rayas-Sanchez, J.E.; Gutierrez-Ayala, V. EM-based statistical analysis and yield estimation using linear-input and neural-output space mapping. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1597–1600. [Google Scholar]
- Zhang, J.; Zhang, C.; Feng, F.; Zhang, W.; Ma, J.; Zhang, Q.J. Polynomial chaos-based approach to yield-driven EM optimization. IEEE Trans. Microw. Theory Tech. 2018, 66, 3186–3199. [Google Scholar] [CrossRef]
- Koziel, S.; Bekasiewicz, A. Sequential approximate optimization for statistical analysis and yield optimization of circularly polarized antennas. IET Microw. Ant. Prop. 2018, 12, 2060–2064. [Google Scholar] [CrossRef]
- Koziel, S.; Bandler, J.W. Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis. IEEE Trans. Microw. Theory Tech. 2015, 63, 107–114. [Google Scholar] [CrossRef]
- Koziel, S.; Bekasiewicz, A. Reduced-cost surrogate modeling of input characteristics and design optimization of dual-band antennas using response features. Int. J. RF Microw. CAE 2018, 28, e21194. [Google Scholar] [CrossRef]
- Koziel, S. Low-cost data-driven surrogate modeling of antenna structures by constrained sampling. IEEE Antennas Wirel. Prop. Lett. 2017, 16, 461–464. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Performance-based nested surrogate modeling of antenna input characteristics. IEEE Trans. Ant. Prop. 2019, 67, 2904–2912. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Reduced-cost surrogate modelling of compact microwave components by two-level kriging interpolation. Eng. Optim. 2020, 52, 960–972. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments. Eng. Comp. 2019, 36, 2293–2308. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Low-cost performance-driven modelling of compact microwave components with two-layer surrogates and gradient kriging. AEU-Int. J. Electron. Commun. 2020, 126, 153419. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A.; Koziel, S. Surrogate modeling of impedance matching transformers by means of variable-fidelity EM simulations and nested co-kriging. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22268. [Google Scholar] [CrossRef]
- Koziel, S.; Bekasiewicz, A. Low-cost surrogate-assisted statistical analysis of miniaturized microstrip couplers. J. Electromagn. Waves Appl. 2016, 30, 1345–1353. [Google Scholar] [CrossRef]
- Simpson, T.W.; Pelplinski, J.D.; Koch, P.N.; Allen, J.K. Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 2001, 17, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Queipo, N.V.; Haftka, R.T.; Shyy, W.; Goel, T.; Vaidynathan, R.; Tucker, P.K. Surrogate based analysis and optimization. Prog. Aerosp. Sci. 2005, 41, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Pietrenko-Dabrowska, A.; Koziel, S.; Al-Hasan, M. Expedited yield optimization of narrow- and multi-band antennas using performance-driven surrogates. IEEE Access 2020, 8, 143104–143113. [Google Scholar] [CrossRef]
- Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust Region Methods; MPS-SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Broyden, C.G. A class of methods for solving nonlinear simultaneous equations. Math. Comp. 1965, 19, 577–593. [Google Scholar] [CrossRef]
- Pietrenko-Dabrowska, A. Rapid tolerance-aware design of miniaturized microwave passives by means of confined-domain surrogates. Int. J. Numer. Model. 2020, 33, e2779. [Google Scholar] [CrossRef]
- Koziel, S.; Bekasiewicz, A. On reduced-cost design-oriented constrained surrogate modeling of antenna structures. IEEE Ant. Wirel. Prop. Lett. 2017, 16, 1618–1621. [Google Scholar] [CrossRef]
- Koziel, S.; Bekasiewicz, A.; Kurgan, P.; Bandler, J.W. Expedited multi-objective design optimization of miniaturized microwave structures using physics-based surrogates. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–3. [Google Scholar]
Algorithm | Algorithm 1 | Algorithm 2 |
---|---|---|
Method | One-shot approach | Sequential approximate optimization |
Solving optimization task | Solve a single task x* = argmin{x ∈ XS: –Y(x)} within the surrogate domain XS | Render series x(i), i = 0, 1, …, of approximations to x* by solving x(i+1) = argmin{x ∈ XS.i: –Ys(i)(x)} |
Yield estimation | Y(x) evaluated once using single surrogate | In each iteration, Ys(i) is evaluated using the ith surrogate |
Surrogate domain | XS = [x(0) – δ, x(0) + δ], δ = [δ1 … δn]T, δk = 10δmax#, k = 1, …, n | XS.i = [x(i) – δ, x(i) + δ], δ = [δ1 … δn]T, δk = 3δmax#, k = 1, …, n |
Pros | Simple to apply | Reduced cost of setting up the surrogate (smaller domain) |
Cons | Expected high cost of surrogate construction in a larger domain | Iterative process involving domain relocation and constructing several surrogates |
Optimization Algorithm | Initial Yield | Optimized Yield | CPU Cost $ | ||
---|---|---|---|---|---|
Estimated by Metamodel | EM-Based | Estimated by Metamodel | EM-Based | ||
Algorithm 1 | 81% | 81% | 92% | 93% | 400 |
Algorithm 2 | 81% | 81% | 91% | 91% | 150 # |
Algorithm of Section 3.1 | 81% | 81% | 91% | 91% | 62 & |
Optimization Algorithm | Initial Yield | Optimized Yield | CPU Cost $ | ||
---|---|---|---|---|---|
Estimated by Metamodel | EM-Based | Estimated by Metamodel | EM-Based | ||
Algorithm 1 | 67% | 62% | 90% | 83% | 400 |
Algorithm 2 | 66% | 62% | 86% | 83% | 200 # |
Algorithm of Section 3.1 | 63% | 62% | 84% | 82% | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koziel, S.; Pietrenko-Dabrowska, A. Performance-Driven Yield Optimization of High-Frequency Structures by Kriging Surrogates. Appl. Sci. 2022, 12, 3697. https://doi.org/10.3390/app12073697
Koziel S, Pietrenko-Dabrowska A. Performance-Driven Yield Optimization of High-Frequency Structures by Kriging Surrogates. Applied Sciences. 2022; 12(7):3697. https://doi.org/10.3390/app12073697
Chicago/Turabian StyleKoziel, Slawomir, and Anna Pietrenko-Dabrowska. 2022. "Performance-Driven Yield Optimization of High-Frequency Structures by Kriging Surrogates" Applied Sciences 12, no. 7: 3697. https://doi.org/10.3390/app12073697
APA StyleKoziel, S., & Pietrenko-Dabrowska, A. (2022). Performance-Driven Yield Optimization of High-Frequency Structures by Kriging Surrogates. Applied Sciences, 12(7), 3697. https://doi.org/10.3390/app12073697