Special Issue on the Intensified Conversion of Organic Waste into Biogas
1. Introduction
2. Strategies to Improve Anaerobic Digestion of Organic Waste
3. Perspectives on the Future of Research on the Intensified Conversion of Organic Waste into Biogas
Funding
Conflicts of Interest
References
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roopnarain, A.; Rama, H.; Ndaba, B.; Bello-Akinosho, M.; Bamuza-Pemu, E.; Adeleke, R. Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization. Renew. Sustain. Energy Rev. 2021, 152, 111717. [Google Scholar] [CrossRef]
- Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Bio./Technol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Solé-Bundó, M.; Passos, F.; Romero-Güiza, M.S.; Ferrer, I.; Astals, S. Co-digestion strategies to enhance microalgae anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2019, 112, 471–482. [Google Scholar] [CrossRef]
- Oliveira, J.V.; Duarte, T.; Costa, J.C.; Cavaleiro, A.J.; Pereira, M.A.; Alves, M.M. Improvement of Biomethane Production from Sewage Sludge in Co-digestion with Glycerol and Waste Frying Oil, Using a Design of Experiments. BioEnergy Res. 2018, 11, 763–771. [Google Scholar] [CrossRef]
- Montes, J.; Rico, C. Biogas Potential of Wastes and By-Products of the Alcoholic Beverage Production Industries in the Spanish Region of Cantabria. Appl. Sci. 2020, 10, 7481. [Google Scholar] [CrossRef]
- Coura, R.; Alonso, J.; Rodrigues, A.; Ferraz, A.; Mouta, N.; Silva, R.; Brito, A. Spatially Explicit Model for Anaerobic Co-Digestion Facilities Location and Pre-Dimensioning Considering Spatial Distribution of Resource Supply and Biogas Yield in Northwest Portugal. Appl. Sci. 2021, 11, 1841. [Google Scholar] [CrossRef]
- Cavaleiro, A.; Salvador, A.; Martins, G.; Oliveira, C.; Liu, Y.; Martins, V.; Castro, A.; Soares, O.; Pereira, M.; Pereira, L.; et al. Multi-Walled Carbon Nanotubes Enhance Methanogenesis from Diverse Organic Compounds in Anaerobic Sludge and River Sediments. Appl. Sci. 2020, 10, 8184. [Google Scholar] [CrossRef]
- Rotaru, A.E.; Yee, M.O.; Musat, F. Microbes trading electricity in consortia of environmental and biotechnological significance. Curr. Opin. Biotechnol. 2021, 67, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, N.; Bakke, R.; Bergland, W. Thermophilic Methane Production from Hydrothermally Pretreated Norway Spruce (Picea abies). Appl. Sci. 2020, 10, 4989. [Google Scholar] [CrossRef]
- Mota-Panizio, R.; Hermoso-Orzáez, M.; Carmo-Calado, L.; Lourinho, G.; Brito, P. Biochemical Methane Potential of Cork Boiling Wastewater at Different Inoculum to Substrate Ratios. Appl. Sci. 2021, 11, 3064. [Google Scholar] [CrossRef]
- García-Cascallana, J.; Barrios, X.; Martinez, E. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Appl. Sci. 2021, 11, 964. [Google Scholar] [CrossRef]
- Koniuszewska, I.; Czatzkowska, M.; Harnisz, M.; Korzeniewska, E. The Impact of Antimicrobial Substances on the Methanogenic Community during Methane Fermentation of Sewage Sludge and Cattle Slurry. Appl. Sci. 2021, 11, 369. [Google Scholar] [CrossRef]
- Ding, G.; He, B. Process Simulation of Co-Gasification of Raw Municipal Solid Waste and Bituminous Coal in CO2/O2 Atmosphere. Appl. Sci. 2020, 10, 1921. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, G. Special Issue on the Intensified Conversion of Organic Waste into Biogas. Appl. Sci. 2022, 12, 3573. https://doi.org/10.3390/app12073573
Martins G. Special Issue on the Intensified Conversion of Organic Waste into Biogas. Applied Sciences. 2022; 12(7):3573. https://doi.org/10.3390/app12073573
Chicago/Turabian StyleMartins, Gilberto. 2022. "Special Issue on the Intensified Conversion of Organic Waste into Biogas" Applied Sciences 12, no. 7: 3573. https://doi.org/10.3390/app12073573
APA StyleMartins, G. (2022). Special Issue on the Intensified Conversion of Organic Waste into Biogas. Applied Sciences, 12(7), 3573. https://doi.org/10.3390/app12073573