Study of Discharge Characteristics on Ignition Performance via High-Speed Imaging in a CVCC
Abstract
:1. Introduction
2. Experimental Setup
2.1. Constant Volume Combustion Chamber
2.2. Simultaneous Visualization Method
2.3. Ignition Coils and Test Conditions
3. Results and Discussion
3.1. Combustion Results
3.2. Simultaneous Visualization Results
3.3. Quantitative Analysis of the Initial Flame Area and Initial Flame Luminance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alger, T.; Gingrich, J.; Roberts, C.; Mangold, B. Cooled exhaust-gas recirculation for fuel economy and emissions improvement in gasoline engines. Int. J. Engine Res. 2011, 12, 252–264. [Google Scholar] [CrossRef]
- Alger, T.; Gingrich, J.; Khalek, I.A.; Mangold, B. The role of EGR in PM emissions from gasoline engines. SAE Int. J. Fuels Lubr. 2010, 3, 85–98. [Google Scholar] [CrossRef]
- Corrigan, D.; Di Blasio, G.; Ianniello, R.; Silvestri, N. Engine Knock Detection Methods for Spark Ignition and Prechamber Combustion Systems in a High-Performance Gasoline Direct Injection Engine. SAE Int. J. Engines 2022, 15, 1–2. [Google Scholar]
- Hayashi, N.; Sugiura, A.; Abe, Y.; Suzuki, K. Development of Ignition Technology for Dilute Combustion Engines. SAE Int. J. Engines 2017, 10, 984–995. [Google Scholar] [CrossRef]
- Alger, T.; Gingrich, J.; Roberts, C.; Mangold, B.; Sellnau, M. A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications; SAE Technical Paper; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Kakuho, A.; Hashizume, Y.; Urushihara, T.; Ito, T.; Mansion, T. Local fuel concentration measurement in the vicinity of the spark plug under various operating conditions with a port injection engine using infrared absorption (MD: Measurement and Diagnostics, General Session Papers). In Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Tokyo, Japan, 28 July 2008; pp. 563–570. [Google Scholar]
- Hamamoto, Y.; Yoshiyama, S.; Tomita, E.; Li, X. Cycle-to-Cycle Fluctuation in Combustion of Diluted Mixture in Spark-Ignition Engine. Trans. Jpn. Soc. Mech. Eng. Ser. B 1995, 61, 3440–3445. [Google Scholar] [CrossRef] [Green Version]
- Hori, T.; Shibata, M.; Okabe, S.; Hashizume, K. Super Ignition Spark Plug with Fine Center & Ground Electrodes; SAE Technical Paper; SAE: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Nishiyama, A.; Le, M.K.; Furui, T.; Ikeda, Y. The relationship between in-cylinder flow-field near spark plug areas, the spark behavior, and the combustion performance inside an optical SI engine. Appl. Sci. 2019, 9, 1545. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Xuesong, L.; Xiao, Y.; Ming, Z.; Min, X. Effect of discharge current boost on ignition and combustion under cross flow conditions. Combust. Flame 2021, 223, 1–14. [Google Scholar]
- Kazuhiro, O.; Yoshihiko, A.; Yoshifumi, U.; Yuyu, Z.; Tatsuya, K.; Yasuo, M. Analysis on control factors of air-fuel ratio limit by using in-cylinder optical measurement. Trans. JSME 2018, 84, 1–12. [Google Scholar]
- Oryoji, K.; Uchise, Y.; Akagi, Y.; Qingchu, C.; Kuboyama, T.; Moriyoshi, Y. In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition; SAE Technical Paper; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Badawy, T.; Bao, X.; Xu, H. Impact of spark plug gap on flame kernel propagation and engine performance. Appl. Energy 2017, 191, 311–327. [Google Scholar] [CrossRef]
- Peterson, B.; Reuss, D.L.; Sick, V. On the ignition and flame development in a spray-guided direct-injection spark-ignition engine. Combust. Flame 2014, 161, 240–255. [Google Scholar] [CrossRef]
- Peterson, B.; Reuss, D.L.; Sick, V. High-speed imaging analysis of misfires in a spray-guided direct injection engine. Proc. Combust. Inst. 2011, 33, 3089–3096. [Google Scholar] [CrossRef]
- Peterson, B.; Sick, V. High-speed flow and fuel imaging study of available spark energy in a spray-guided direct-injection engine and implications on misfires. Int. J. Engine Res. 2010, 11, 313–329. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Yu, S.; Chen, J.; Chen, G.; Zheng, M.; Ting DS, K. Impacts of spark discharge current and duration on flame development of lean mixtures under flow conditions. In Proceedings of the Internal Combustion Engine Division Fall Technical Conference, San Diego, CA, USA, 4 November 2018; Volume 51982. [Google Scholar]
- Zhang, A.; Cung, K.; Lee, S.Y.; Naber, J.; Huberts, G.; Czekala, M.; Qu, Q. The impact of spark discharge pattern on flame initiation in a turbulent lean and dilute mixture in a pressurized combustion vessel. SAE Int. J. Engines 2013, 6, 435–446. [Google Scholar] [CrossRef]
- Suzuki, K.; Uehara, K.; Murase, E.; Nogawa, S. Study of ignitability in strong flow field. In Proceedings of the International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany, 3–4 November 2016; Springer: Cham, Switzerland, 2016; pp. 69–84. [Google Scholar]
- Tilz, A.; Meyer, G.; Kiesling, C.; Pirker, G.; Salbrechter, S.; Wimmer, A. Test Rig for Fundamental Investigations of Ignition System Characteristics under Severe Flow Conditions. In Proceedings of the 4th International Conference on Ignition Systems for Gasoline Engines, Berlin, Germany, 6–7 December 2018; Expert Verlag GmbH: Tübingen, Germany, 2018; pp. 75–90. [Google Scholar]
- Mancaruso, E.; Vaglieco, B.M.; Sequino, L. Using 2d infrared imaging for the analysis of non-conventional fuels combustion in a diesel engine. SAE Int. J. Engines 2015, 8, 1701–1715. [Google Scholar] [CrossRef]
- Okabe, S.; Morino, T.; Hori, T.; Hanashi, K. Spark Plug Temperature Measurement Using an IR Camera. Denso Tech. Rev. 2008, 13, 64–70. [Google Scholar]
- Shiraishi, T.; Teraji, A.; Moriyoshi, Y. The effects of ignition environment and discharge waveform characteristics on spark channel formation and relationship between the discharge parameters and the EGR combustion limit. SAE Int. J. Engines 2016, 9, 171–178. [Google Scholar] [CrossRef]
- Kinoshita, M.; Fuyuto, T.; Akatsuka, H. Measurement of vibrational and rotational temperature in spark-discharge plasma by optical emission spectroscopy: Change in thermal equilibrium characteristics of plasma under air flow. Int. J. Engine Res. 2019, 20, 746–757. [Google Scholar] [CrossRef]
- Matsumoto, O.; Kuboyama, T.; Moriyoshi, Y. Simultaneous Visualization of Initial Flame and Discharge Channel during Spark Ignition Process; Society of Automotive Engineers of Japan: Yokohama, Japan, 2018; Volume 49. [Google Scholar]
- National Institute of Standards and Technology. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available online: http://webbook.nist.gov/chemistry/ (accessed on 21 March 2018).
- Marcus, K. A Specific Heat Ratio Model and Compression Ratio Estimation. Ph.D. Thesis, Department of Electrical Engineering, Linköping University, Linköping, Sweden, 2004. [Google Scholar]
Coil A | Coil B | Coil C | |
---|---|---|---|
Discharge current [mA] | 65 | 170 | 180 |
Discharge duration [ms] | 2.2 | 1.3 | 1.9 |
Ignition energy [mJ] | 95.0 | 95.0 | 165.0 |
Conditions | Basic Condition | High Diluted Condition | High Flow Condition |
---|---|---|---|
Nitrogen (N2) dilution | 24% | 28% | 24% |
Mixture composition | C3H8: 3.06%, O2: 15.29%, N2: 81.65% | C3H8: 2.90%, O2: 14.49%, N2: 82.61% | C3H8: 3.06%, O2: 15.29%, N2: 81.65% |
Flow velocity | 8 m/s | 8 m/s | 18 m/s |
Equivalence ratio | 1 | ||
Initial temperature | 358 K | ||
Initial pressure | 4 Bar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Kuboyama, T.; Moriyoshi, Y.; Oryoji, K. Study of Discharge Characteristics on Ignition Performance via High-Speed Imaging in a CVCC. Appl. Sci. 2022, 12, 3280. https://doi.org/10.3390/app12073280
Chen Q, Kuboyama T, Moriyoshi Y, Oryoji K. Study of Discharge Characteristics on Ignition Performance via High-Speed Imaging in a CVCC. Applied Sciences. 2022; 12(7):3280. https://doi.org/10.3390/app12073280
Chicago/Turabian StyleChen, Qingchu, Tatsuya Kuboyama, Yasuo Moriyoshi, and Kazuhiro Oryoji. 2022. "Study of Discharge Characteristics on Ignition Performance via High-Speed Imaging in a CVCC" Applied Sciences 12, no. 7: 3280. https://doi.org/10.3390/app12073280
APA StyleChen, Q., Kuboyama, T., Moriyoshi, Y., & Oryoji, K. (2022). Study of Discharge Characteristics on Ignition Performance via High-Speed Imaging in a CVCC. Applied Sciences, 12(7), 3280. https://doi.org/10.3390/app12073280