A Design Chart for the Analysis of the Maximum Strain of Reinforcement in GRPEs Considering the Arching and Stress History of the Subsoil
Abstract
:1. Introduction
2. Design Method Development
- (a)
- The embankment fill is homogeneous, isotropic, and cohesionless.
- (b)
- The subsoil is made up of homogeneous, isotropic, and elastoplastic materials, while the pile is elastic.
- (c)
- The reinforcement is homogeneous and transversely isotropic.
- (d)
- The sag of the reinforcement is equal to the settlement of the subsoil.
- (e)
- The pile is an end-bearing pile. There is no friction between a pile and the surrounding subsoil.
- (f)
- The embankment fill, subsoil, and piles deform only vertically.
- (g)
- The settlement of the bearing stratum is 0 m, and piles are sufficiently rigid and undergo insignificant deformation.
2.1. Soil Arching
2.2. Effect of the Reinforcement
2.3. Subsoil Settlements
- (a)
- If OCR = 1, then
- (b)
- If OCR < 1,
- (c)
- If OCR > 1,when ,
2.4. Overall Equilibrium
2.5. Design Charts for the Analysis of Maximum Strain in Reinforcement
2.6. Ultimate Limit State Analyses
- (a)
- BS8006-recommended method
- (b)
- EBGEO-recommended method
3. Case Study
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Comparison Results
4. Parameters’ Study
4.1. Pile Efficacy
4.2. The Influence of Stress History
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halvordson, K.A.; Plaut, R.H.; Filz, G.M. Analysis of geosynthetic reinforcement in pile-supported embankments. Part II: 3D cable-net model. Geosynth. Int. 2010, 17, 68–76. [Google Scholar] [CrossRef]
- Hewlett, W.J.; Randolph, M.F. Analysis of piled embankments. Ground Eng. 1988, 21, 12–18. [Google Scholar]
- Iglesia, G.R.; Einstein, H.H.; Whitman, R.V. Investigation of Soil Arching with Centrifuge Tests. J. Geotech. Geoenviron. Eng. 2014, 140, 04013005. [Google Scholar] [CrossRef]
- Terzaghi, K. Theoretical Soil Mechanics; Wiley: New York, NY, USA, 1943. [Google Scholar]
- Zhuang, Y.; Ellis, E. Finite-element analysis of a piled embankment with reinforcement compared with BS 8006 predictions. Géotechnique 2014, 64, 910–917. [Google Scholar] [CrossRef]
- Zhuang, Y.; Ellis, E.; Yu, H.S. Three-dimensional finite-element analysis of arching in a piled embankment. Géotechnique 2012, 62, 1127–1131. [Google Scholar] [CrossRef]
- Zhuang, Y.; Ellis, E. Finite-element analysis of a piled embankment with reinforcement and subsoil. Géotechnique 2016, 66, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Wang, K.Y. Three-dimensional behavior of biaxial geogrid in a piled embankment: Numerical investigation. Can. Geotech. J. 2015, 52, 1629–1635. [Google Scholar] [CrossRef]
- Filz, G.M.; Smith, M.E. Net Vertical Loads on Geosynthetic Reinforcement in Column-Supported Embankments. In Proceedings of the Geo-Denver 2007, New Peaks in Geotechnics, Denver, CO, USA, 18–21 February 2007; pp. 1–10. [Google Scholar]
- Zhuang, Y.; Wang, K.Y.; Liu, H.L. A simplified model to analyze the reinforced piled embankments. Geotext. Geomembr. 2014, 42, 154–165. [Google Scholar] [CrossRef]
- Grammatikopoulou, A.; Zdravkovic, L.; Potts, D.M. The influence of previous stress history and stress path direction on the surface settlement trough induced by tunnelling. Géotechnique 2008, 58, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Taylor, R.N.; Divall, S.; Zheng, G.; Sun, J.; Stallebrass, S.E.; Goodey, R.J. Explanation for twin tunnelling-induced surface settlements by changes in soil stiffness on account of stress history. Tunn. Undergr. Space Technol. 2019, 85, 160–169. [Google Scholar] [CrossRef]
- Wang, J.F.; Yuan, W.; He, K.; Zheng, P.X. Influence of stress history on consolidation coefficient of saturated soft soil. Earth Sci. 2020, 45, 4640–4648. (In Chinese) [Google Scholar]
- British Standard BS8006-1; Code of Practice for Strengthened/Reinforced Soils and Other Fills. British Standards Institution (BSI): London, UK, 2010.
- British Standard BS8006-1; Code of Practice for Strengthened/Reinforced Soils and Other Fills, incorporating corrigendum 1. British Standards Institution (BSI): London, UK, 2012.
- Van Eekelen, S.J.M.; Bezuijen, A.; Van Tol, A.F. Analysis and modification of the British Standard BS8006 for the design of piled embankments. Geotext. Geomembr. 2011, 29, 345–359. [Google Scholar] [CrossRef]
- Russell, D.; Naughton, P.J.; Kempton, G. A new design procedure for piled embankments. In Proceedings of the 56th Canadian Geotechnical Conference and the NAGS Conference, Winnipeg, MB, Canada, 29 September–1 October 2003; pp. 858–865. [Google Scholar]
- Zhuang, Y.; Wang, K. Analytical Solution for Reinforced Piled Embankments on Elastoplastic Consolidated Soil. Int. J. Geomech. 2017, 17, 06017010. [Google Scholar] [CrossRef]
- Pham, T.A.; Dias, D. A simplified model for the analysis of piled embankments considering arching and subsoil consolidation. Geotext. Geomembr. 2021. [Google Scholar] [CrossRef]
- Deb, K.; Mohapatra, S.R. Analysis of stone column-supported geosynthetic-reinforced embankments. Appl. Math. Model. 2013, 37, 2943–2960. [Google Scholar] [CrossRef]
- GGS. Recommendations for Design and Analysis of Earth Structures Using Geosynthetic Reinforcements—EBGEO; German Geotechnical Society: Berlin, Germany, 2011. [Google Scholar]
- Lu, W.; Miao, L. A simplified 2-D evaluation method of the arching effect for geosynthetic-reinforced and pile-supported embankments. Comput. Geotech. 2015, 65, 97–103. [Google Scholar] [CrossRef]
- Van Eekelen, S.J.M.; Bezuijen, A.; Van Tol, A.F. An analytical model for arching in piled embankments. Geotext. Geomembr. 2013, 39, 78–102. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, M.; Hu, Y.; Zhao, H.; Chen, B. Semi-analytical solutions for geosynthetic-reinforced and pile-supported embankment. Comput. Geotech. 2012, 44, 167–175. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, S.; Zhao, H. Coupling-Based Elastic Solution of Arching Evolution for GRPSE. J. Eng. Mech. 2021, 147, 06021005. [Google Scholar] [CrossRef]
- Pham, T.A. Design and analysis of geosynthetic-reinforced and floating column-supported embankments. Int. J. Geotech. Eng. 2021, 1–17. [Google Scholar] [CrossRef]
- Kempfert, H.G.; Zaeske, D. Interactions in reinforced bearing layers over partial supported underground. In Proceedings of the 12th European Conference for Soil Mechanics and Geotechnical Engineering (ECSMGE), Amsterdam, The Netherlands, 7–10 June 1999; pp. 1527–1532. [Google Scholar]
- Kempfert, H.G.; Stadel, M.; Zaeske, D. Berechnung von geokunststoffbewehrten Teagschichten über Pfahlelementen. Bautechnik 1997, 12, 818–825. [Google Scholar]
- Zaeske, D. Zur Wirkungsweise von Unbewehrten und bewehrten Mineralischen Tragschichten Über Pfahlartigen Gründungselementen; University of Kassel: Kassel, Germany, 2001. [Google Scholar]
- Zaeske, D. Berechnung und Wirkungsweise von unbewehrten und bewehrten mineralischen Tragschichten ueber punkt-und linienfoermigen Traggliedern. Bauingenieur 2002, 77, 80–86. [Google Scholar]
- Casagrande, A. The determination of pre-consolidation load and its practical significance. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, 22–26 June 1936. [Google Scholar]
- Liu, H.; Kong, G.; Chu, J.; Ding, X. Grouted gravel column-supported highway embankment over soft clay: Case study. Can. Geotech. J. 2015, 52, 1725–1733. [Google Scholar] [CrossRef]
- King, D.J.; Bouazza, A.; Gniel, J.R.; Rowe, R.K.; Bui, H.H. Serviceability design for geosynthetic reinforced column supported embankments. Geotext. Geomembr. 2017, 45, 261–279. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Chen, R.P.; Chen, Y.M. Study of in-situ data of pile-supported embankment with pile partially penetrated in soft soils. Chin. J. Rock Mech. Eng. 2009, 11, 2336–2341. (In Chinese) [Google Scholar]
- He, P.; Wang, W.D.; Xu, Z.H. Empirical correlations of compression index and swelling index for Shanghai clay. Rock Soil Mech. 2018, 39, 3773–3782. (In Chinese) [Google Scholar]
Soil Type | h (m) | w (%) | e | γ (kN/m3) | Es (MPa) | c’ (kPa) | φ (o) |
---|---|---|---|---|---|---|---|
Silty clay | 1.5 | 37.9 | 1.010 | 18.2 | 3.39 | 22.4 | 24.7 |
Mud clay | 6.9 | 52.0 | 1.457 | 17.0 | 1.87 | 18.0 | 24.0 |
Soft clay | 19.1 | 47.4 | 1.339 | 17.3 | 2.17 | 15.0 | 19.6 |
Silty clay (Medium density) | 2.4 | 28.1 | 0.740 | 19.4 | 5.57 | 19.5 | 38.0 |
Soil Type | h (m) | γ (kN/m3) | w (%) | e0 | Es (MPa) | c’ (kPa) | φ’ (o) |
---|---|---|---|---|---|---|---|
Silty clay | 2.5~3.0 | 19.1 | 27.2 | 0.806 | 5.30 | 0 | 24 |
Mud | 2.0~3.9 | 17.3 | 59.9 | 1.687 | 1.47 | 0 | 20 |
Mud clay | 15.0~16.5 | 17.1 | 47.0 | 1.318 | 2.07 | 0 | 22 |
Sub-clay | 12.0~13.2 | 18.9 | 27.8 | 0.778 | 6.91 | 0 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Zhuang, Y.; Zhang, X.; Dong, X. A Design Chart for the Analysis of the Maximum Strain of Reinforcement in GRPEs Considering the Arching and Stress History of the Subsoil. Appl. Sci. 2022, 12, 2536. https://doi.org/10.3390/app12052536
Hu S, Zhuang Y, Zhang X, Dong X. A Design Chart for the Analysis of the Maximum Strain of Reinforcement in GRPEs Considering the Arching and Stress History of the Subsoil. Applied Sciences. 2022; 12(5):2536. https://doi.org/10.3390/app12052536
Chicago/Turabian StyleHu, Shunlei, Yan Zhuang, Xidong Zhang, and Xiaoqiang Dong. 2022. "A Design Chart for the Analysis of the Maximum Strain of Reinforcement in GRPEs Considering the Arching and Stress History of the Subsoil" Applied Sciences 12, no. 5: 2536. https://doi.org/10.3390/app12052536
APA StyleHu, S., Zhuang, Y., Zhang, X., & Dong, X. (2022). A Design Chart for the Analysis of the Maximum Strain of Reinforcement in GRPEs Considering the Arching and Stress History of the Subsoil. Applied Sciences, 12(5), 2536. https://doi.org/10.3390/app12052536