Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator
Abstract
:1. Introduction
2. Sensor Structure and Design Steps
3. Simulation, Results, and Discussion
3.1. Flat Structure
3.2. Bended Structure
3.2.1. Effect of the Cylinder’s Radius
3.2.2. Effect of the Test Tube Radius
3.3. Complex Permittivity Extraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
F(GHz) | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 12.8519 | 21.0867 | 27.566 | 35.2247 | 39.6522 | 47.0192 | 52.2535 | 62.3769 | 67.3889 | 73.6248 | 78.4483 |
1.6 | 12.335 | 20.433 | 26.882 | 34.657 | 39.067 | 46.536 | 51.830 | 62.009 | 67.136 | 73.52 | 78.379 |
1.7 | 11.8721 | 19.8409 | 26.2388 | 34.1461 | 38.5128 | 46.0731 | 51.4296 | 61.6617 | 66.9092 | 73.4357 | 78.3121 |
1.8 | 11.3234 | 19.179 | 25.5572 | 33.5753 | 37.9806 | 45.6131 | 51.0303 | 61.338 | 66.6868 | 73.3392 | 78.2389 |
1.9 | 10.8541 | 18.5743 | 24.9102 | 33.0398 | 37.4472 | 45.1421 | 50.6211 | 61.0071 | 66.447 | 73.2332 | 78.1716 |
2 | 10.4244 | 17.9912 | 24.2695 | 32.5075 | 36.9012 | 44.6503 | 50.1939 | 60.6629 | 66.1929 | 73.12 | 78.1021 |
2.1 | 10.0188 | 17.4183 | 23.6274 | 31.9647 | 36.341 | 44.1386 | 49.7499 | 60.304 | 65.9307 | 73.0038 | 78.0283 |
2.2 | 9.6427 | 16.8679 | 22.995 | 31.4244 | 35.7738 | 43.6112 | 49.2946 | 59.9344 | 65.6675 | 72.8897 | 77.9499 |
2.3 | 9.304 | 16.3549 | 22.3861 | 30.9054 | 35.2085 | 43.0745 | 48.8339 | 59.5598 | 65.4111 | 72.7818 | 77.8677 |
2.4 | 9.0006 | 15.8796 | 21.8051 | 30.4104 | 34.6493 | 42.5389 | 48.3722 | 59.1837 | 65.1676 | 72.6806 | 77.7838 |
2.5 | 8.7265 | 15.4338 | 21.2502 | 29.9319 | 34.0992 | 42.0134 | 47.9121 | 58.808 | 64.9361 | 72.5828 | 77.7011 |
2.6 | 8.4771 | 15.0114 | 20.7194 | 29.463 | 33.5615 | 41.4977 | 47.4517 | 58.4318 | 64.7056 | 72.4804 | 77.6186 |
2.7 | 8.2487 | 14.6098 | 20.2112 | 28.9968 | 33.0362 | 40.9826 | 46.9851 | 58.0515 | 64.4607 | 72.3615 | 77.5328 |
2.8 | 8.0394 | 14.228 | 19.725 | 28.5265 | 32.5193 | 40.4626 | 46.5099 | 57.6652 | 64.1927 | 72.2178 | 77.4422 |
2.9 | 7.8489 | 13.8649 | 19.2613 | 28.049 | 32.0087 | 39.9424 | 46.0304 | 57.2748 | 63.903 | 72.0503 | 77.3496 |
3 | 7.6754 | 13.518 | 18.819 | 27.5659 | 31.5029 | 39.4261 | 45.5487 | 56.879 | 63.5945 | 71.863 | 77.2556 |
F(GHz) | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% |
---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 9.857 | 12.0791 | 12.4836 | 12.5329 | 11.5566 | 11.3342 | 11.0666 | 10.4624 | 8.8525 | 7.0544 | 5.5275 |
1.6 | 9.639 | 12.0977 | 12.7086 | 12.9647 | 12.0202 | 11.9023 | 11.6584 | 11.1057 | 9.4186 | 7.4721 | 5.9109 |
1.7 | 9.422 | 12.0869 | 12.8847 | 13.3445 | 12.4596 | 12.4676 | 12.2457 | 11.7436 | 10.0072 | 7.88 | 6.2745 |
1.8 | 9.2413 | 12.1474 | 13.1168 | 13.7721 | 12.9276 | 13.0323 | 12.8336 | 12.3691 | 10.5878 | 8.2944 | 6.6377 |
1.9 | 9.0486 | 12.1806 | 13.3146 | 14.1746 | 13.3837 | 13.5877 | 13.4095 | 12.9892 | 11.1687 | 8.7079 | 7.0145 |
2 | 8.8445 | 12.1827 | 13.4801 | 14.5505 | 13.8239 | 14.1311 | 13.9734 | 13.6051 | 11.7274 | 9.1221 | 7.3991 |
2.1 | 8.634 | 12.1507 | 13.611 | 14.8947 | 14.2411 | 14.6573 | 14.5224 | 14.2157 | 12.2563 | 9.5372 | 7.7857 |
2.2 | 8.4198 | 12.0882 | 13.7056 | 15.2029 | 14.6299 | 15.1566 | 15.0538 | 14.818 | 12.7667 | 9.9527 | 8.1704 |
2.3 | 8.2037 | 12.0029 | 13.7659 | 15.4741 | 14.9887 | 15.622 | 15.5695 | 15.4079 | 13.277 | 10.3688 | 8.5512 |
2.4 | 7.9914 | 11.9011 | 13.7973 | 15.7088 | 15.3174 | 16.057 | 16.073 | 15.9822 | 13.7915 | 10.7868 | 8.9274 |
2.5 | 7.7885 | 11.7873 | 13.8066 | 15.9089 | 15.6177 | 16.4708 | 16.5661 | 16.5393 | 14.3003 | 11.2093 | 9.2995 |
2.6 | 7.5949 | 11.6664 | 13.8002 | 16.0801 | 15.8952 | 16.8688 | 17.0509 | 17.0811 | 14.7989 | 11.6399 | 9.6675 |
2.7 | 7.408 | 11.5426 | 13.7823 | 16.2304 | 16.1568 | 17.2512 | 17.5308 | 17.6109 | 15.2939 | 12.0819 | 10.0337 |
2.8 | 7.2292 | 11.4171 | 13.753 | 16.3635 | 16.4035 | 17.615 | 18.0042 | 18.1281 | 15.7885 | 12.5332 | 10.4033 |
2.9 | 7.0617 | 11.289 | 13.7092 | 16.4789 | 16.6303 | 17.9543 | 18.4616 | 18.6269 | 16.2732 | 12.9858 | 10.78 |
3 | 6.9029 | 11.1574 | 13.6504 | 16.5768 | 16.8335 | 18.2642 | 18.8947 | 19.1053 | 16.7367 | 13.4346 | 11.1603 |
References
- Gao, M.; Pan, J.-S.; Li, J.; Zhang, Z.; Chai, Q.-W. 3-D Terrains Deployment of Wireless Sensors Network by Utilizing Parallel Gases Brownian Motion Optimization. J. Internet Technol. 2021, 22, 13–29. [Google Scholar]
- Zegadi, R.; Lorrain, N.; Bodiou, L.; Guendouz, M.; Ziet, L.; Charrier, J. Enhanced Mid-Infrared Gas Absorption Spectroscopic Detection Using Chalcogenide or Porous Germanium Waveguides. J. Opt. 2021, 23, 035102. [Google Scholar] [CrossRef]
- Zegadi, R.; Ziet, L.; Zegadi, A. Design of High Sensitive Temperature Sensor Based on Two-Dimensional Photonic Crystal. Silicon 2020, 12, 2133–2139. [Google Scholar] [CrossRef]
- Yuan, C.; Sun, X. Fingerprint Liveness Detection Adapted to Different Fingerprint Sensors Based on Multiscale Wavelet Transform and Rotation-Invarient Local Binary Pattern. J. Internet Technol. 2018, 19, 91–98. [Google Scholar]
- Malekian, R.; Thakur, A.; Nair, L.; Pedersen, C.F. A Sensor Based Peer to Peer Vehicle Data Sharing System, an Internet of Vehicles Approach. J. Internet Technol. 2018, 19, 2155–2162. [Google Scholar]
- Kim, K.T.; Youn, H.Y. A Dynamic Level-Based Routing Protocol for Energy Efficiency in Wireless Sensor Networks. J. Internet Technol. 2017, 18, 11–21. [Google Scholar]
- Chudpooti, N.; Duangrit, N.; Sangpet, P.; Akkaraekthalin, P.; Imberg, B.U.; Robertson, I.D.; Somjit, N. In-Situ Self-Aligned NaCl-Solution Fluidic-Integrated Microwave Sensors for Industrial and Biomedical Applications. IEEE Access 2020, 8, 188897–188907. [Google Scholar] [CrossRef]
- Entesari, K.; Helmy, A.A.; Moslehi-Bajestan, M. Integrated Systems for Biomedical Applications: Silicon-Based RF\/Microwave Dielectric Spectroscopy and Sensing. IEEE Microw. Mag. 2017, 18, 57–72. [Google Scholar] [CrossRef]
- Vlachogiannakis, G.; Hu, Z.; Shivamurthy, H.T.; Neto, A.; Pertijs, M.A.P.; de Vreede, L.C.N.; Spirito, M. Miniaturized Broadband Microwave Permittivity Sensing for Biomedical Applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 48–55. [Google Scholar] [CrossRef]
- Bourqui, J.; Fear, E.C. Shielded UWB Sensor for Biomedical Applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1614–1617. [Google Scholar] [CrossRef]
- Helmy, A.A.; Jeon, H.-J.; Lo, Y.-C.; Larsson, A.J.; Kulkarni, R.; Kim, J.; Silva-Martinez, J.; Entesari, K. A Self-Sustained CMOS Microwave Chemical Sensor Using a Frequency Synthesizer. IEEE J. Solid State Circuits 2012, 47, 2467–2483. [Google Scholar] [CrossRef]
- Mirzaei, A.; Neri, G. Microwave-Assisted Synthesis of Metal Oxide Nanostructures for Gas Sensing Application: A Review. Sens. Actuators B Chem. 2016, 237, 749–775. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Deif, S.; Abdolrazzaghi, M.; Chen, B.; Ramsawak, D.; Amyotte, M.; Vahabisani, N.; Hashisho, Z.; Chen, W.; Daneshmand, M. A Microwave Ring Resonator Sensor for Early Detection of Breaches in Pipeline Coatings. IEEE Trans. Ind. Electron. 2018, 65, 1626–1635. [Google Scholar] [CrossRef]
- Jilani, M.T.; Rehman, M.Z.U.; Khan, A.M.; Chughtai, O.; Abbas, M.A.; Khan, M.T. An Implementation of IoT-Based Microwave Sensing System for the Evaluation of Tissues Moisture. Microelectron. J. 2019, 88, 117–127. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Sabah, C. Microwave Metamaterial Absorber for Sensing Applications. Opto Electron. Rev. 2017, 25, 318–325. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. A Review on RF Micro-Electro-Mechanical-Systems (MEMS) Switch for Radio Frequency Applications. Microsyst. Technol. 2021, 27, 2525–2542. [Google Scholar] [CrossRef]
- Zhang, K.; Bariani, F.; Dong, Y.; Zhang, W.; Meystre, P. Proposal for an Optomechanical Microwave Sensor at the Subphoton Level. Phys. Rev. Lett. 2015, 114, 113601. [Google Scholar] [CrossRef] [Green Version]
- Rawat, V.; Dhobale, S.; Kale, S.N. Ultra-Fast Selective Sensing of Ethanol and Petrol Using Microwave-Range Metamaterial Complementary Split-Ring Resonators. J. Appl. Phys. 2014, 116, 164106. [Google Scholar] [CrossRef]
- Petrin, A. Wave Propagation; IntechOpen: London, UK, 2011; ISBN 978-953-307-275-3. [Google Scholar]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Sarkhel, A.; Mitra, D.; Chaudhuri, S.R.B. A Compact Metamaterial with Multi-Band Negative-Index Characteristics. Appl. Phys. A 2016, 122, 471. [Google Scholar] [CrossRef]
- Alqadami, A.S.M.; Jamlos, M.F.; Soh, P.J.; Rahim, S.K.A.; Vandenbosch, G.A.E.; Narbudowicz, A. Miniaturized Dual-Band Antenna Array with Double-Negative (DNG) Metamaterial for Wireless Applications. Appl. Phys. A 2016, 123, 22. [Google Scholar] [CrossRef]
- Webb, B.A.; Ziolkowski, R.W. Metamaterial-Inspired Multilayered Structures Optimized to Enable Wireless Communications through a Plasmasonic Region. Appl. Phys. Lett. 2021, 118, 094102. [Google Scholar] [CrossRef]
- Manage, P.S.; Naik, U.; Nargundkar, S.; Rayar, V. A Survey on Applications of Metamaterials in Antenna Design. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 153–158. [Google Scholar]
- Canet-Ferrer, J. Metamaterials and Metasurfaces; IntechOpen: London, UK, 2019; ISBN 978-1-78984-842-7. [Google Scholar]
- Kayal, S.; Shaw, T.; Mitra, D. Design of Metamaterial-Based Compact and Highly Sensitive Microwave Liquid Sensor. Appl. Phys. A 2019, 126, 13. [Google Scholar] [CrossRef]
- Muhammed, S.K.T.; Ansari, M.A.H.; Jha, A.K.; Akhtar, M.J. Design of SRR-Based Microwave Sensor for Characterization of Magnetodielectric Substrates. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 524–526. [Google Scholar] [CrossRef]
- Kiani, S.; Rezaei, P.; Navaei, M. Dual-Sensing and Dual-Frequency Microwave SRR Sensor for Liquid Samples Permittivity Detection. Measurement 2020, 160, 107805. [Google Scholar] [CrossRef]
- Viswanathan, A.P.; Moolat, R.; Mani, M.; Va, S.; Pezholil, M. A Simple Electrically Small Microwave Sensor Based on Complementary Asymmetric Single Split Resonator for Dielectric Characterization of Solids and Liquids. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22462. [Google Scholar] [CrossRef]
- Vélez, P.; Su, L.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martín, F. Microwave Microfluidic Sensor Based on a Microstrip Splitter/Combiner Configuration and Split Ring Resonators (SRRs) for Dielectric Characterization of Liquids. IEEE Sens. J. 2017, 17, 6589–6598. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.; Arif, A.; Zubair, M.; Mehmood, M.Q.; Riaz, K. A Low-Cost Multiple Complementary Split-Ring Resonator-Based Microwave Sensor for Contactless Dielectric Characterization of Liquids. IEEE Sens. J. 2020, 20, 11326–11334. [Google Scholar] [CrossRef]
- Zhao, W.-S.; Gan, H.-Y.; He, L.; Liu, Q.; Wang, D.-W.; Xu, K.; Chen, S.; Dong, L.; Wang, G. Microwave Planar Sensors for Fully Characterizing Magneto-Dielectric Materials. IEEE Access 2020, 8, 41985–41999. [Google Scholar] [CrossRef]
- Gan, H.-Y.; Zhao, W.-S.; Liu, Q.; Wang, D.-W.; Dong, L.; Wang, G.; Yin, W.-Y. Differential Microwave Microfluidic Sensor Based on Microstrip Complementary Split-Ring Resonator (MCSRR) Structure. IEEE Sens. J. 2020, 20, 5876–5884. [Google Scholar] [CrossRef]
- Lee, C.-S.; Bai, B.; Song, Q.-R.; Wang, Z.-Q.; Li, G.-F. Open Complementary Split-Ring Resonator Sensor for Dropping-Based Liquid Dielectric Characterization. IEEE Sens. J. 2019, 19, 11880–11890. [Google Scholar] [CrossRef]
- Armghan, A.; Alanazi, T.M.; Altaf, A.; Haq, T. Characterization of Dielectric Substrates Using Dual Band Microwave Sensor. IEEE Access 2021, 9, 62779–62787. [Google Scholar] [CrossRef]
- Kumar, A.; Rajawat, M.S.; Mahto, S.K.; Sinha, R. Metamaterial-Inspired Complementary Split Ring Resonator Sensor and Second-Order Approximation for Dielectric Characterization of Fluid. J. Electron. Mater. 2021, 50, 5925–5932. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Thundat, T.; Daneshmand, M. High Resolution Microwave Microstrip Resonator for Sensing Applications. Sens. Actuators A Phys. 2015, 233, 224–230. [Google Scholar] [CrossRef]
- Haq, T.; Ruan, C.; Ullah, S.; Kosar, A. Reconfigurable Ultra Wide Band Notch Filter Based on Complementary Metamaterial. In Proceedings of the 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand, 5–8 August 2018; pp. 381–382. [Google Scholar]
- Haq, T.; Ruan, C.; Zhang, X.; Ullah, S. Complementary Metamaterial Sensor for Nondestructive Evaluation of Dielectric Substrates. Sensors 2019, 19, 2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuma, E.L.; Iano, Y.; Fontgalland, G.; Bravo Roger, L.L. Microwave Sensor for Liquid Dielectric Characterization Based on Metamaterial Complementary Split Ring Resonator. IEEE Sens. J. 2018, 18, 9978–9983. [Google Scholar] [CrossRef]
- Yeo, J.; Lee, J.-I. High-Sensitivity Microwave Sensor Based on an Interdigital-Capacitor-Shaped Defected Ground Structure for Permittivity Characterization. Sensors 2019, 19, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, A.; Lim, S. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor. Sensors 2016, 16, 1802. [Google Scholar] [CrossRef] [Green Version]
- Bao, J.; Swicord, M.L.; Davis, C.C. Microwave Dielectric Characterization of Binary Mixtures of Water, Methanol, and Ethanol. J. Chem. Phys. 1996, 104, 4441–4450. [Google Scholar] [CrossRef]
- Li, D.; Free, C.E.; Pitt, K.E.G.; Barnwell, P.G. A Simple Method for Accurate Loss Tangent Measurement of Dielectrics Using a Microwave Resonant Cavity. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 118–120. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-Based Microfluidic Sensor for Dielectric Characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Awang, R.A.; Tovar-Lopez, F.J.; Baum, T.; Sriram, S.; Rowe, W.S.T. Meta-Atom Microfluidic Sensor for Measurement of Dielectric Properties of Liquids. J. Appl. Phys. 2017, 121, 094506. [Google Scholar] [CrossRef]
Parameters | W | L | Hs | W1 | W2 | W3 | W4 | L1 | L2 | L3 | L4 | L5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value (mm) | 28 | 20 | 0.75 | 6.2 | 3.6 | 2.94 | 1.6 | 9.2 | 8.54 | 6.2 | 1.6 | 2.26 |
Parameters | L6 | d1 | d2 | d3 | d4 | d5 | d6 | a1 | a2 | a3 | s | θ |
Value (mm) | 0.94 | 6.2 | 5.02 | 3.84 | 2.85 | 2.26 | 1.67 | 0.33 | 0.33 | 0.33 | 0.5 | 45° |
Bending Radius | Resonant Frequency 0% (MHz) | Resonant Frequency 100% (MHz) | Δfr (MHz) | Maximum Q Factor |
---|---|---|---|---|
R = 10 mm | 2295.6 | 2046.3 | 249.3 | 38.6 |
R = 7.5 mm | 2225.6 | 1936.4 | 289.2 | 34 |
R = 5 mm | 1990.7 | 1596.3 | 394.5 | 27.9 |
Tube Radius (mm) | Resonant Frequency 0% (MHz) | Resonant Frequency 100% (MHz) | Δfr (MHz) | Maximum Q Factor (%) |
---|---|---|---|---|
0.75 | 2403.7 | 2284.3 | 119.4 | 88.4 |
1.5 | 2303.6 | 2047.8 | 255.8 | 53.2 |
2.5 | 2061.1 | 1819.6 | 241.5 | 44.1 |
3.75 | 1990.7 | 1596.3 | 394.5 | 27.9 |
5 | 1758.6 | 1376.9 | 381.7 | 23.3 |
Reference | 0% Water Concentration Resonant Frequency (MHz) | 100% Water Concentration Resonant Frequency (MHz) | Δf (MHz) | Maximum Q Factor |
---|---|---|---|---|
[18] | 3980 | 4250 | 270 | 7 |
[20] | 1920 | 1530 | 390 | 9 |
[32] | 2370 | 2020 | 350 | 32 |
[34] | 1050 | 1500 | 450 | 5 |
[35] | 265 | 210 | 55 | 8 |
[37] | 1997 | 1962 | 35 | 42 |
[41] | 2348 | 2302 | 46 | 47 |
[46] | 1960 | 1855 | 105 | 26 |
[47] | 3050 | 2990 | 60 | 55 |
Proposed flat structure | 2418.5 | 2330.4 | 88.1 | 72.71 |
Proposed bended structure | 1990.7 | 1596.3 | 394.5 | 27.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosbah, S.; Zebiri, C.; Sayad, D.; Elfergani, I.; Bouknia, M.L.; Mekki, S.; Zegadi, R.; Palandoken, M.; Rodriguez, J.; Abd-Alhameed, R.A. Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator. Appl. Sci. 2022, 12, 2144. https://doi.org/10.3390/app12042144
Mosbah S, Zebiri C, Sayad D, Elfergani I, Bouknia ML, Mekki S, Zegadi R, Palandoken M, Rodriguez J, Abd-Alhameed RA. Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator. Applied Sciences. 2022; 12(4):2144. https://doi.org/10.3390/app12042144
Chicago/Turabian StyleMosbah, Said, Chemseddine Zebiri, Djamel Sayad, Issa Elfergani, Mohamed Lamine Bouknia, Samira Mekki, Rami Zegadi, Merih Palandoken, Jonathan Rodriguez, and Raed A. Abd-Alhameed. 2022. "Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator" Applied Sciences 12, no. 4: 2144. https://doi.org/10.3390/app12042144
APA StyleMosbah, S., Zebiri, C., Sayad, D., Elfergani, I., Bouknia, M. L., Mekki, S., Zegadi, R., Palandoken, M., Rodriguez, J., & Abd-Alhameed, R. A. (2022). Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator. Applied Sciences, 12(4), 2144. https://doi.org/10.3390/app12042144