Generation of Intense and Temporally Clean Pulses—Contrast Issues of High-Brightness Excimer Systems
Abstract
:1. Introduction
1.1. Comparison of Solid-State and Excimer Systems
1.2. Contrast Issues
1.3. Energy Scalable Pulse Cleaning Techniques
1.3.1. Plasma Mirror
1.3.2. Nonlinear Fourier-Filter
1.3.3. Former Experimental Results concerning the Use of NFF
1.4. Effect of Saturated Amplification in KrF, in the Presence of Nonsaturable Absorption
1.5. Picosecond Gain Dynamics of Excimers
2. Amplification Properties of Excimers for Long and Intense Short Pulses
2.1. Contrast Issues for Short-Pulse Amplification in Excimers
2.2. Practical Consequences of the Gain Dynamics for Short-Pulse KrF Amplifiers
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szatmári, S.; Marowsky, G.; Simon, P. Femtosecond excimer lasers and their applications. In Landolt–Börnstein—Group VIII Advanced Materials and Technologies; Herziger, G., Weber, H., Poprawe, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1B1, pp. 215–253. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Com. 1985, 56, 219–221. [Google Scholar] [CrossRef]
- Yanovsky, V.; Chvykov, V.; Kalinchenko, G.; Rousseau, P.; Planchon, T.; Matsuoka, T.; Maksimchuk, A.; Nees, J.; Cheriaux, G.; Mourou, G.; et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Exp. 2008, 16, 2109–2114. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Shen, Z.; Zhang, Q.; Teng, H.; Wei, Z. High-contrast 1.16 PW Ti: Sapphire laser system combined with a doubled Chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett. 2011, 36, 3194–3196. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Bang, W.; Dyer, G.; Wang, X.; Gaul, E.; Borger, T.; Ringuette, M.; Spinks, M.; Quevedo, H.; Bernstein, A.; et al. The Texas Petawatt Laser and Current Experiments. In AIP Conference, Proceedings of the Advanced Accelerator Concepts. 15th Advanced Accelerator Concepts Workshop, Austin, TX, USA, 10–15 June 2012; Zgadzaj, R., Gaul, E., Downer, C.M., Eds.; American Institute of Physics: College Park, MD, USA, 2012; Volume 1507, pp. 874–878. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.; João, C.P.; Fils, J.; Gottschall, T.; Hein, J.; Körner, J.; Limpert, J.; Roth, M.; Stöhlker, T.; Bagnoud, V. Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification. Appl. Phys. B 2014, 116, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Jeong, T.M.; Lee, J. Femtosecond petawatt laser. Ann. Phys. 2014, 526, 157–172. [Google Scholar] [CrossRef]
- Chu, Y.; Liang, X.; Yu, L.; Xu, Y.; Xu, L.; Ma, L.; Lu, X.; Liu, Y.; Leng, Y.; Li, R.; et al. High-contrast 2.0 Petawatt Ti:sapphire laser system. Opt. Express 2013, 21, 29231–29239. [Google Scholar] [CrossRef] [Green Version]
- Borisov, B.A.; McCorkindale, C.J.; Poopalasingam, S.; Longworth, J.W.; Simon, P.; Szatmári, S.; Rhodes, C.K. Rewriting the rules governing high intensity interactions of light with matter. Rep. Prog. Phys. 2016, 79, 046401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glownia, J.H.; Misewich, J.; Sorokin, P.P. Ultrafast ultraviolet pump-probe apparatus. J. Opt. Soc. Am. 1986, B3, 1573–1579. [Google Scholar] [CrossRef]
- Schwarzenbach, A.P.; Luk, T.S.; McIntyre, I.A.; Johann, U.; McPherson, A.; Boyer, K.; Rhodes, C.K. Subpicosecond KrF* excimer-laser source. Opt. Lett. 1986, 11, 499–501. [Google Scholar] [CrossRef]
- Szatmári, S.; Schäfer, F.P. Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Com. 1988, 68, 196–202. [Google Scholar] [CrossRef]
- Dick, B.; Szatmári, S.; Rácz, B.; Schäfer, F.P. Bandwidth limited amplification of 220 fs pulses in XeCl: Theoretical and experimental study of temporal and spectral behavior. Opt. Com. 1987, 62, 277–283. [Google Scholar] [CrossRef]
- Békési, J.; Szatmári, S.; Simon, P.; Marowsky, G. Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz. Appl. Phys. B 2002, 75, 521–524. [Google Scholar] [CrossRef]
- Zhao, Q.; Szatmári, S.; Schäfer, F.P. Gain dynamics of XeF ans subpicosecond pulse generation at 351 nm. Appl. Phys. B 1988, 47, 325–332. [Google Scholar] [CrossRef]
- Alekseev, S.V.; Aristov, A.I.; Grudtsyn, Y.V.; Ivanov, N.G.; Koval’chuk, B.M.; Losev, V.F.; Mamaev, S.B.; Mesyats, G.A.; Mikheev, L.D.; Panchenko, Y.N.; et al. Visible-range hybrid femtosecond systems based on a XeF (C–A) amplifier: State of the art and prospects. Quantum Electron. 2013, 43, 190–200. [Google Scholar] [CrossRef]
- Szatmári, S.; Bakonyi, Z.; Simon, P. Active spatial filtering of laser beams. Opt. Comm. 1997, 134, 199–204. [Google Scholar] [CrossRef]
- Simon, P.; Nagy, T.; Szatmári, S. Nonlinear spectral filtering of femtosecond pulses. Opt. Comm. 1998, 145, 155–158. [Google Scholar] [CrossRef]
- Rhodes, C.K. Excimer lasers. In Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Szatmari, S.; Almási, G.; Feuerhake, M.; Simon, P. Production of intensities of ~1019 W/cm2 by a table-top KrF laser. Appl. Phys. B 1996, 63, 463–466. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Ceccotti, T.; Lévy, A.; Popescu, H.; Réau, F.; D’Oliveira, P.; Monot, P.; Geindre, J.P.; Lefebvre, E.; Martin, P. Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses. Phys. Rev. Lett. 2007, 99, 185002. [Google Scholar] [CrossRef]
- Flacco, A.; Sylla, F.; Veltcheva, M.; Carrié, M.; Nuter, R.; Lefebvre, E.; Batani, D.; Malka, V. Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration. Phys. Rev. E 2010, 81, 036405. [Google Scholar] [CrossRef] [PubMed]
- Green, J.S.; Robinson, A.P.L.; Booth, N.; Carroll, D.C.; Dance, R.J.; Gray, R.J.; MacLellan, D.A.; McKenna, P.; Murphy, C.D.; Rusby, D.; et al. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions. Appl. Phys. Lett. 2014, 104, 214101. [Google Scholar] [CrossRef] [Green Version]
- Wharton, K.B.; Boley, C.D.; Komashko, A.M.; Rubenchik, A.M.; Zweiback, J.; Crane, J.; Hays, G.; Cowan, T.E.; Ditmitre, T. Effects of nonionizing prepulses in high-intensity laser-solid interactions. Phys. Rev. E 2001, 64, 025401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Földes, I.B.; Bakos, J.S.; Gál, K.; Juhász, Z.; Kedves, M.A.; Kocsis, G.; Szatmári, S.; Veres, G. Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces. Laser Phys. 2000, 10, 264–269. [Google Scholar]
- Kapteyn, H.; Murnane, M.; Szoke, A.; Falcone, R. Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 1991, 16, 490–492. [Google Scholar] [CrossRef]
- Thaury, C.; Quéré, F.; Geinder, J.-P.; Levy, A.; Ceccotti, T.; Monot, P.; Bougeard, M.; Réau, F.; D’Oliveira, P.; Audebert, P.; et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 2007, 3, 424–429. [Google Scholar] [CrossRef]
- Marcinkevičius, A.; Tommasini, R.; Tsakiris, G.D.; Witte, K.J.; Gaižauskas, E.; Teubner, U. Frequency doubling of multi-terawatt femtosecond pulses. Appl. Phys. B 2004, 79, 547–554. [Google Scholar] [CrossRef]
- Hillier, D.; Danson, C.; Duffield, S.; Egan, D.; Elsmere, S.; Girling, M.; Harvey, E.; Hopps, N.; Norman, M.; Parker, S.; et al. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline. Appl. Opt. 2013, 52, 4258–4263. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Jullien, A.; Rousseau, J.-P.; Liu, Y.; Houard, A.; Ramirez, P.; Papadopoulos, D.; Pellegrina, A.; Georges, P.; Druon, F.; et al. Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation. Rev. Sci. Instrum. 2013, 84, 043106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Leng, Y.; Guo, X.; Zou, X.; Li, Y.; Lu, X.; Wang, C.; Liu, Y.; Liang, X.; Li, R.; et al. Pulse temporal quality improvement in a petawatt Ti: Sapphire laser based on cross-polarized wave generation. Opt. Commun. 2014, 313, 175–179. [Google Scholar] [CrossRef]
- Kalashnikov, M.P.; Risse, E.; Schonnagel, H.; Sandner, W. Double chirped-pulse-amplification laser: A way to clean pulses temporally. Opt. Lett. 2005, 30, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Szatmári, S.; Dajka, R.; Barna, A.; Gilicze, B.; Földes, I.B. Improvement of the temporal and spatial contrast of high-brightness laser beams. Laser Phys. Lett. 2016, 13, 075301. [Google Scholar] [CrossRef]
- Ziener, C.; Foster, P.S.; Divall, E.J.; Hooker, C.J.; Hutchinson, M.H.R.; Langley, A.J.; Neely, D. Specular reflectivity of plasma mirrors as a function of intensity, pulse duration, and angle of incidence. J. Appl. Phys. 2003, 93, 768. [Google Scholar] [CrossRef]
- Wittmann, T.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.S.; Rousseau, J.P.; Burgy, F.; Douillet, D.; Lefrou, T.; Ta Phuoc, K.; Chamberet, J.P. Towards ultrahigh-contrast ultraintense laser pulses-complete characterization of a double plasma-mirror pulse cleaner. Rev. Sci. Instrum. 2006, 77, 083109. [Google Scholar] [CrossRef]
- Scott, G.G.; Bagnoud, V.; Brabetz, C.; Clark, R.J.; Green, J.S.; Heathcote, R.I.; Powell, H.W.; Zielbauer, B.; Arber, T.D.; McKenna, P.; et al. Optimization of plasma mirror reflectivity and optical quality using double laser pulses. New J. Phys. 2015, 17, 033027. [Google Scholar] [CrossRef] [Green Version]
- Bagnoud, V.; Wagner, F. Ultrahigh temporal contrast performance of the PHELIX petawatt facility. High Power Laser Sci. Eng. 2016, 4, e39. [Google Scholar] [CrossRef] [Green Version]
- Földes, I.B.; Barna, A.; Csáti, D.; Szűcs, F.L.; Szatmári, S. Plasma mirror effect with a short-pulse KrF laser. J. Phys. Conf. Ser. 2010, 244, 032004. [Google Scholar] [CrossRef]
- Földes, I.B.; Csáti, D.; Szűcs, F.L.; Szatmári, S. Plasma mirror and temperature evolution for short pulse KrF lasers. Radiat. Eff. Defects Solids 2010, 165, 429–433. [Google Scholar] [CrossRef]
- Gilicze, B.; Barna, A.; Kovács, Z.; Szatmári, S.; Földes, I.B. Plasma mirrors for short pulse KrF lasers. Rev. Sci. Instrum. 2016, 87, 083101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilicze, B.; Dajka, R.; Földes, I.B.; Szatmári, S. Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter. Opt. Exp. 2017, 25, 20791–20797. [Google Scholar] [CrossRef] [PubMed]
- Gilicze, B.; Homik, Z.; Szatmári, S. High-contrast, high-brightness ultraviolet laser system. Opt. Exp. 2019, 12, 17377–17386. [Google Scholar] [CrossRef] [PubMed]
- Szatmári, S.; Simon, P. Interferometric multiplexing scheme for excimer amplifiers. Opt. Commun. 1993, 98, 181–192. [Google Scholar] [CrossRef]
- Békési, J.; Marowsky, G.; Szatmári, S.; Simon, P. A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing. Z. Phys. Chem. 2001, 215, 1543–1555. [Google Scholar] [CrossRef]
- Szatmári, S.; Schäfer, F.P. Comparative study of the gain dynamics of XeCl and KrF with subpicosecond resolution. J. Opt. Soc. Am. B 1987, 4, 1943–1948. [Google Scholar] [CrossRef]
- Tilleman, M.M.; Jacob, J.H. Short pulse amplification in the presence of absorption. Appl. Phys. Lett. 1987, 50, 121. [Google Scholar] [CrossRef]
- Almási, G.; Szatmári, S.; Simon, P. Optimized operation of short-pulse KrF amplifiers by off-axis amplification. Opt. Commun. 1992, 88, 231–239. [Google Scholar] [CrossRef]
- Frantz, L.M.; Nodvik, J.S. Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 1963, 34, 2346. [Google Scholar] [CrossRef]
- Taylor, A.J.; Gibson, R.B.; Roberts, J.P. Picosecond gain dynamics in KrF amplifiers. Appl. Phys. Lett. 1987, 52, 773–775. [Google Scholar] [CrossRef]
- Kühnle, G.; Teubner, U.; Szatmári, S. Amplified spontaneous emission in short-pulse excimer amplifiers. Appl. Phys. B 1990, 51, 71–74. [Google Scholar] [CrossRef]
- Ghani Moghadam, G.; Farahbod, A.H. General formula for calculation of amplified spontaneous emission intensity. Opt. Quant. Electron 2016, 48, 227. [Google Scholar] [CrossRef]
- Milonni, W.P.; Eberly, H.J. Amplification of short pulses. In Laser Physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Chapter 6; pp. 255–258. [Google Scholar]
- Hokazono, H.; Midorikawa, K.; Obara, M.; Fujioka, T. Theoretical analysis of a self-sustained discharge pumped XeCl. J. Appl. Phys. 1984, 56, 680. [Google Scholar] [CrossRef]
(mJ/cm2) | (cm2) | (cm2) | |
---|---|---|---|
KrF | 2.0 | 4 × 10−16 | * |
XeCl | 0.85 | 5 × 10−16 | 2.5 × 10−16 |
XeF | 0.2 | 7.9 × 10−16 | 2.0 × 10−15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatmári, S.; Dajka, R.; Almási, G.; Földes, I.B. Generation of Intense and Temporally Clean Pulses—Contrast Issues of High-Brightness Excimer Systems. Appl. Sci. 2022, 12, 2064. https://doi.org/10.3390/app12042064
Szatmári S, Dajka R, Almási G, Földes IB. Generation of Intense and Temporally Clean Pulses—Contrast Issues of High-Brightness Excimer Systems. Applied Sciences. 2022; 12(4):2064. https://doi.org/10.3390/app12042064
Chicago/Turabian StyleSzatmári, Sándor, Rita Dajka, Gábor Almási, and István B. Földes. 2022. "Generation of Intense and Temporally Clean Pulses—Contrast Issues of High-Brightness Excimer Systems" Applied Sciences 12, no. 4: 2064. https://doi.org/10.3390/app12042064
APA StyleSzatmári, S., Dajka, R., Almási, G., & Földes, I. B. (2022). Generation of Intense and Temporally Clean Pulses—Contrast Issues of High-Brightness Excimer Systems. Applied Sciences, 12(4), 2064. https://doi.org/10.3390/app12042064