Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e9–e68. [Google Scholar] [CrossRef] [PubMed]
- Shaddy, R.E.; George, A.T.; Jaecklin, T.; Lochlainn, E.N.; Thakur, L.; Agrawal, R.; Solar-Yohay, S.; Chen, F.; Rossano, J.W.; Severin, T.; et al. Systematic Literature Review on the Incidence and Prevalence of Heart Failure in Children and Adolescents. Pediatr. Cardiol. 2018, 39, 415–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, A.N.; Hsia, T.-Y.; Schievano, S.; Bozkurt, S. Complications in Children with Ventricular Assist Devices: Systematic Review and Meta-Analyses. Heart Fail Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Fadl, S.; Wåhlander, H.; Fall, K.; Cao, Y.; Sunnegårdh, J. The Highest Mortality Rates in Childhood Dilated Cardiomyopathy Occur during the First Year after Diagnosis. Acta Paediatr. 2018, 107, 672–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, T.G.; Fenton, M. Dilated Cardiomyopathy in Children. Paediatr. Child Health 2013, 23, 59–63. [Google Scholar] [CrossRef]
- Silva, J.N.A.; Canter, C.E. Current Management of Pediatric Dilated Cardiomyopathy. Curr. Opin. Cardiol. 2010, 25, 80–87. [Google Scholar] [CrossRef]
- Adachi, I.; Burki, S.; Zafar, F.; Morales, D.L.S. Pediatric Ventricular Assist Devices. J. Thorac. Dis. 2015, 7, 2194–2202. [Google Scholar] [CrossRef]
- Schweiger, M.; Lorts, A.; Conway, J. Mechanical Circulatory Support Challenges in Pediatric and (Adult) Congenital Heart Disease. Curr. Opin. Organ Transplant. 2018, 23, 301–307. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, M.J.; Lorts, A.; Davies, R.R.; Fynn-Thompson, F.; Joong, A.; Maeda, K.; Mascio, C.E.; McConnell, P.I.; Mongé, M.C.; Nandi, D.; et al. Early Experience with the HeartMate 3 Continuous-Flow Ventricular Assist Device in Pediatric Patients and Patients with Congenital Heart Disease: A Multicenter Registry Analysis. J. Heart Lung Transplant. 2020, 39, 573–579. [Google Scholar] [CrossRef]
- Navaratnam, M.; Maeda, K.; Hollander, S.A. Pediatric Ventricular Assist Devices: Bridge to a New Era of Perioperative Care. Pediatric Anesth. 2019, 29, 506–518. [Google Scholar] [CrossRef]
- Burki, S.; Adachi, I. Pediatric Ventricular Assist Devices: Current Challenges and Future Prospects. Vasc. Health Risk Manag. 2017, 13, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, A.G.; Sundareswaran, K.S.; Samayoa, A.X.; Jeewa, A.; McKenzie, E.D.; Rossano, J.W.; Farrar, D.J.; Frazier, O.H.; Morales, D.L. Outcomes of Pediatric Patients Supported by the HeartMate II Left Ventricular Assist Device in the United States. J. Heart Lung Transplant. 2013, 32, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.L.; Yeh, J.; Reinhartz, O.; Rosenthal, D.N.; Kaufman, B.D.; Almond, C.S.; Hollander, S.A.; Maeda, K. HeartWare HVAD for Biventricular Support in Children and Adolescents: The Stanford Experience. ASAIO J. 2016, 62, e46–e51. [Google Scholar] [CrossRef]
- Wiegmann, L.; Thamsen, B.; de Zélicourt, D.; Granegger, M.; Boës, S.; Schmid Daners, M.; Meboldt, M.; Kurtcuoglu, V. Fluid Dynamics in the HeartMate 3: Influence of the Artificial Pulse Feature and Residual Cardiac Pulsation. Artif. Organs 2019, 43, 363–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozkurt, S. Mathematical Modeling of Cardiac Function to Evaluate Clinical Cases in Adults and Children. PLoS ONE 2019, 14, e0224663. [Google Scholar] [CrossRef]
- Di Lonardo, A.; Lazzeri, D.; Pascone, C.; Agostini, T. Total Burn Surface Area (TBSA): Propose of a New Objective Approach Based on the Body Mass Index (BMI). Burns 2010, 36, 1138–1139. [Google Scholar] [CrossRef]
- Edelbi, R.E.; Lindemalm, S.; Eksborg, S. Estimation of Body Surface Area in Various Childhood Ages–Validation of the Mosteller Formula. Acta Paediatr. 2012, 101, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Boes, S.; Thamsen, B.; Haas, M.; Daners, M.S.; Meboldt, M.; Granegger, M. Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Trans. Biomed. Eng. 2019, 66, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.; Epstein, D.; Baltagi, S.; Mehegan, M.E.; Simpson, K.E.; Canter, C.E.; Silvestry, S.; Eghtesady, P.; Boston, U.S. Continuous Flow Device Support in Children Using the HeartWare HVAD: 1,000 Days of Lessons Learned From a Single Center Experience. ASAIO J. 2015, 61, 569–573. [Google Scholar] [CrossRef]
- Sahulee, R.; Rajagopal, H. Successful Use of the Heart Ware HVAD as Bridge to Transplantation in an 8year Old Boy with a Previous History of Berlin Heart EXCOR Support. Cardiovasc. Dis. Diagn. 2016, 4, 1–3. [Google Scholar] [CrossRef]
- Ono, M.; Sawa, Y.; Nakatani, T.; Tominaga, R.; Matsui, Y.; Yamazaki, K.; Saiki, Y.; Niinami, H.; Matsumiya, G.; Arai, H.; et al. Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist Device in Patients With Small Body Surface Area. Circ. J. 2016, 80, 1931–1936. [Google Scholar] [CrossRef] [Green Version]
- Morales, D. HeartMate 3TM Implant in Pediatric Patient with Dilated Cardiomyopathy. CTS Net 2019. [Google Scholar] [CrossRef]
- Pfister, R.; Kirsch, M.; Natterer, J.; Di Bernardo, S.; Pretre, R. Implantation of a HeartMate 3 in a 13-Year-Old Child with Dilated Cardiomyopathy. Pediatr. Cardiol. 2020, 41, 423–424. [Google Scholar] [CrossRef]
- Kumar, J.; Elhassan, A.; Dimitrova, G.; Essandoh, M. The Lavare Cycle: A Novel Pulsatile Feature of the HVAD Continuous-Flow Left Ventricular Assist Device. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1170–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castagna, F.; Stöhr, E.J.; Pinsino, A.; Cockcroft, J.R.; Willey, J.; Reshad Garan, A.; Topkara, V.K.; Colombo, P.C.; Yuzefpolskaya, M.; McDonnell, B.J. The Unique Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and Future Opportunities. Curr. Hypertens. Rep. 2017, 19, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagani, F.D. Continuous-Flow Rotary Left Ventricular Assist Devices with “3rd Generation” Design. Semin. Thorac. Cardiovasc. Surg. 2008, 20, 255–263. [Google Scholar] [CrossRef]
- Lee, S.; Fukamachi, K.; Golding, L.; Moazami, N.; Starling, R.C. Left Ventricular Assist Devices: From the Bench to the Clinic. CRD 2013, 125, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Jezovnik, M.K.; Radovancevic, R.; Gregoric, I.D. Endothelial Function in Patients with Continuous-Flow Left Ventricular Assist Devices. Angiology 2021, 72, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hasin, T.; Matsuzawa, Y.; Guddeti, R.R.; Aoki, T.; Kwon, T.-G.; Schettle, S.; Lennon, R.J.; Chokka, R.G.; Lerman, A.; Kushwaha, S.S. Attenuation in Peripheral Endothelial Function after Continuous Flow Left Ventricular Assist Device Therapy Is Associated with Cardiovascular Adverse Events. Circ. J. 2015, 79, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device–Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Kilic, A.; Acker, M.A.; Atluri, P. Dealing with Surgical Left Ventricular Assist Device Complications. J. Thorac. Dis. 2015, 7, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Delmo, E.M.J.; del Maria Javier, M.F.; Böthig, D.; Rüffer, A.; Cesnjevar, R.; Dandel, M.; Hetzer, R. Heart Failure in the Young: Insights into Myocardial Recovery with Ventricular Assist Device Support. Cardiovasc. Diagn. Ther. 2021, 11, 148–163. [Google Scholar] [CrossRef]
- Klabunde, R. Cardiovascular Physiology Concepts, 2nd ed.; LWW: Philadelphia, PA, USA, 2011; ISBN 978-1-4511-1384-6. [Google Scholar]
- Ursino, M. Interaction between Carotid Baroregulation and the Pulsating Heart: A Mathematical Model. Am. J. Physiol. 1998, 275, H1733–H1747. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, S.; Safak, K.K. Evaluating the Hemodynamical Response of a Cardiovascular System under Support of a Continuous Flow Left Ventricular Assist Device via Numerical Modeling and Simulations. Comput. Math. Methods Med. 2013, 2013, e986430. [Google Scholar] [CrossRef] [PubMed]
- FDA. Medtronic Stops Distribution and Sale of HeartWare HVAD System Due to Risk of Neurological Adverse Events, Mortality, and Potential Failure to Restart; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Di Molfetta, A.; Ferrari, G.; Iacobelli, R.; Filippelli, S.; Fresiello, L.; Guccione, P.; Toscano, A.; Amodeo, A. Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients. Artif. Organs 2017, 41, 242–252. [Google Scholar] [CrossRef]
Emax [mmHg/mL] | Emin [mmHg/mL] | A [mmHg] | B [1/mL] | V0 [mL] | l [cm] | K | R [mmHg s/mL] | L [mmHgs2/mL] | C [mL/mmHg] | |
---|---|---|---|---|---|---|---|---|---|---|
LA | 0.4 | 0.2 | - | - | 3 | 4.5 | 2.5 | - | - | - |
LV | 3.5 (1.3 a) | - | 1 (0.85 a) | 0.02 | 10 (17 a) | 7 | 1.5 (1.4 a) | - | - | - |
RA | 0.4 | 0.2 | - | - | 3 | 4.5 | 2.5 | - | - | - |
RV | 1.4 | - | 1 | 0.02 | 25 | 7 | 3.25 | - | - | - |
MV | - | - | - | - | - | - | - | 0.002 | - | - |
AV | - | - | - | - | - | - | - | 0.002 | - | - |
TV | - | - | - | - | - | - | - | 0.001 | - | - |
PV | - | - | - | - | - | - | - | 0.001 | - | - |
Ao | - | - | - | - | - | - | - | 0.05 | 1E-5 | 0.13 |
AS | - | - | - | - | - | - | - | 0.95 b (1.4 a) | 1E-5 | 1.13 |
VS | - | - | - | - | - | - | - | 0.05 | - | 19.35 |
Po | - | - | - | - | - | - | - | 0.01 | 1E-5 | 3.33 |
AP | - | - | - | - | - | - | - | 0.15 | 1E-5 | 0.13 |
VP | - | - | - | - | - | - | - | 0.05 | - | 19.35 |
MAP [mmHg] | PP [mmHg] | CO/MPO [L/min] | EDV [mL] | ESV [mL] | EDD [cm] | ESD [cm] | |
---|---|---|---|---|---|---|---|
Healthy CVS | 82 | 43 | 4.41 | 92 | 37 | 4.1 | 2.6 |
DCM CVS | 80 | 31 | 3.06 | 125 | 86 | 4.9 | 4.1 |
HVAD | 81 | 11 | 4.38 | 91 | 56 | 4.2 | 3.3 |
HVAD Lavare | 81 | 15 * | 4.37 | 100 * | 53 * | 4.4 * | 3.2 * |
HM2 | 82 | 14 | 4.40 | 92 | 54 | 4.2 | 3.2 |
HM3 | 82 | 6 | 4.42 | 89 | 58 | 4.2 | 3.4 |
HM3 Artificial Pulse | 81 | 20 * | 4.38 | 98 * | 56 * | 4.4 * | 3.3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şafak, K.K.; Aluç, M.C.; Bozkurt, S. Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Appl. Sci. 2022, 12, 1937. https://doi.org/10.3390/app12041937
Şafak KK, Aluç MC, Bozkurt S. Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Applied Sciences. 2022; 12(4):1937. https://doi.org/10.3390/app12041937
Chicago/Turabian StyleŞafak, Koray K., Mehmet Can Aluç, and Selim Bozkurt. 2022. "Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices" Applied Sciences 12, no. 4: 1937. https://doi.org/10.3390/app12041937
APA StyleŞafak, K. K., Aluç, M. C., & Bozkurt, S. (2022). Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Applied Sciences, 12(4), 1937. https://doi.org/10.3390/app12041937