Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e9–e68. [Google Scholar] [CrossRef] [PubMed]
- Shaddy, R.E.; George, A.T.; Jaecklin, T.; Lochlainn, E.N.; Thakur, L.; Agrawal, R.; Solar-Yohay, S.; Chen, F.; Rossano, J.W.; Severin, T.; et al. Systematic Literature Review on the Incidence and Prevalence of Heart Failure in Children and Adolescents. Pediatr. Cardiol. 2018, 39, 415–436. [Google Scholar] [CrossRef] [PubMed]
- George, A.N.; Hsia, T.-Y.; Schievano, S.; Bozkurt, S. Complications in Children with Ventricular Assist Devices: Systematic Review and Meta-Analyses. Heart Fail Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Fadl, S.; Wåhlander, H.; Fall, K.; Cao, Y.; Sunnegårdh, J. The Highest Mortality Rates in Childhood Dilated Cardiomyopathy Occur during the First Year after Diagnosis. Acta Paediatr. 2018, 107, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Day, T.G.; Fenton, M. Dilated Cardiomyopathy in Children. Paediatr. Child Health 2013, 23, 59–63. [Google Scholar] [CrossRef]
- Silva, J.N.A.; Canter, C.E. Current Management of Pediatric Dilated Cardiomyopathy. Curr. Opin. Cardiol. 2010, 25, 80–87. [Google Scholar] [CrossRef]
- Adachi, I.; Burki, S.; Zafar, F.; Morales, D.L.S. Pediatric Ventricular Assist Devices. J. Thorac. Dis. 2015, 7, 2194–2202. [Google Scholar] [CrossRef]
- Schweiger, M.; Lorts, A.; Conway, J. Mechanical Circulatory Support Challenges in Pediatric and (Adult) Congenital Heart Disease. Curr. Opin. Organ Transplant. 2018, 23, 301–307. [Google Scholar] [CrossRef]
- O’Connor, M.J.; Lorts, A.; Davies, R.R.; Fynn-Thompson, F.; Joong, A.; Maeda, K.; Mascio, C.E.; McConnell, P.I.; Mongé, M.C.; Nandi, D.; et al. Early Experience with the HeartMate 3 Continuous-Flow Ventricular Assist Device in Pediatric Patients and Patients with Congenital Heart Disease: A Multicenter Registry Analysis. J. Heart Lung Transplant. 2020, 39, 573–579. [Google Scholar] [CrossRef]
- Navaratnam, M.; Maeda, K.; Hollander, S.A. Pediatric Ventricular Assist Devices: Bridge to a New Era of Perioperative Care. Pediatric Anesth. 2019, 29, 506–518. [Google Scholar] [CrossRef]
- Burki, S.; Adachi, I. Pediatric Ventricular Assist Devices: Current Challenges and Future Prospects. Vasc. Health Risk Manag. 2017, 13, 177–185. [Google Scholar] [CrossRef][Green Version]
- Cabrera, A.G.; Sundareswaran, K.S.; Samayoa, A.X.; Jeewa, A.; McKenzie, E.D.; Rossano, J.W.; Farrar, D.J.; Frazier, O.H.; Morales, D.L. Outcomes of Pediatric Patients Supported by the HeartMate II Left Ventricular Assist Device in the United States. J. Heart Lung Transplant. 2013, 32, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.L.; Yeh, J.; Reinhartz, O.; Rosenthal, D.N.; Kaufman, B.D.; Almond, C.S.; Hollander, S.A.; Maeda, K. HeartWare HVAD for Biventricular Support in Children and Adolescents: The Stanford Experience. ASAIO J. 2016, 62, e46–e51. [Google Scholar] [CrossRef]
- Wiegmann, L.; Thamsen, B.; de Zélicourt, D.; Granegger, M.; Boës, S.; Schmid Daners, M.; Meboldt, M.; Kurtcuoglu, V. Fluid Dynamics in the HeartMate 3: Influence of the Artificial Pulse Feature and Residual Cardiac Pulsation. Artif. Organs 2019, 43, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, S. Mathematical Modeling of Cardiac Function to Evaluate Clinical Cases in Adults and Children. PLoS ONE 2019, 14, e0224663. [Google Scholar] [CrossRef]
- Di Lonardo, A.; Lazzeri, D.; Pascone, C.; Agostini, T. Total Burn Surface Area (TBSA): Propose of a New Objective Approach Based on the Body Mass Index (BMI). Burns 2010, 36, 1138–1139. [Google Scholar] [CrossRef]
- Edelbi, R.E.; Lindemalm, S.; Eksborg, S. Estimation of Body Surface Area in Various Childhood Ages–Validation of the Mosteller Formula. Acta Paediatr. 2012, 101, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Boes, S.; Thamsen, B.; Haas, M.; Daners, M.S.; Meboldt, M.; Granegger, M. Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Trans. Biomed. Eng. 2019, 66, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.; Epstein, D.; Baltagi, S.; Mehegan, M.E.; Simpson, K.E.; Canter, C.E.; Silvestry, S.; Eghtesady, P.; Boston, U.S. Continuous Flow Device Support in Children Using the HeartWare HVAD: 1,000 Days of Lessons Learned From a Single Center Experience. ASAIO J. 2015, 61, 569–573. [Google Scholar] [CrossRef]
- Sahulee, R.; Rajagopal, H. Successful Use of the Heart Ware HVAD as Bridge to Transplantation in an 8year Old Boy with a Previous History of Berlin Heart EXCOR Support. Cardiovasc. Dis. Diagn. 2016, 4, 1–3. [Google Scholar] [CrossRef]
- Ono, M.; Sawa, Y.; Nakatani, T.; Tominaga, R.; Matsui, Y.; Yamazaki, K.; Saiki, Y.; Niinami, H.; Matsumiya, G.; Arai, H.; et al. Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist Device in Patients With Small Body Surface Area. Circ. J. 2016, 80, 1931–1936. [Google Scholar] [CrossRef]
- Morales, D. HeartMate 3TM Implant in Pediatric Patient with Dilated Cardiomyopathy. CTS Net 2019. [Google Scholar] [CrossRef]
- Pfister, R.; Kirsch, M.; Natterer, J.; Di Bernardo, S.; Pretre, R. Implantation of a HeartMate 3 in a 13-Year-Old Child with Dilated Cardiomyopathy. Pediatr. Cardiol. 2020, 41, 423–424. [Google Scholar] [CrossRef]
- Kumar, J.; Elhassan, A.; Dimitrova, G.; Essandoh, M. The Lavare Cycle: A Novel Pulsatile Feature of the HVAD Continuous-Flow Left Ventricular Assist Device. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- Castagna, F.; Stöhr, E.J.; Pinsino, A.; Cockcroft, J.R.; Willey, J.; Reshad Garan, A.; Topkara, V.K.; Colombo, P.C.; Yuzefpolskaya, M.; McDonnell, B.J. The Unique Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and Future Opportunities. Curr. Hypertens. Rep. 2017, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Pagani, F.D. Continuous-Flow Rotary Left Ventricular Assist Devices with “3rd Generation” Design. Semin. Thorac. Cardiovasc. Surg. 2008, 20, 255–263. [Google Scholar] [CrossRef]
- Lee, S.; Fukamachi, K.; Golding, L.; Moazami, N.; Starling, R.C. Left Ventricular Assist Devices: From the Bench to the Clinic. CRD 2013, 125, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Jezovnik, M.K.; Radovancevic, R.; Gregoric, I.D. Endothelial Function in Patients with Continuous-Flow Left Ventricular Assist Devices. Angiology 2021, 72, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hasin, T.; Matsuzawa, Y.; Guddeti, R.R.; Aoki, T.; Kwon, T.-G.; Schettle, S.; Lennon, R.J.; Chokka, R.G.; Lerman, A.; Kushwaha, S.S. Attenuation in Peripheral Endothelial Function after Continuous Flow Left Ventricular Assist Device Therapy Is Associated with Cardiovascular Adverse Events. Circ. J. 2015, 79, 770–777. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device–Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Kilic, A.; Acker, M.A.; Atluri, P. Dealing with Surgical Left Ventricular Assist Device Complications. J. Thorac. Dis. 2015, 7, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Delmo, E.M.J.; del Maria Javier, M.F.; Böthig, D.; Rüffer, A.; Cesnjevar, R.; Dandel, M.; Hetzer, R. Heart Failure in the Young: Insights into Myocardial Recovery with Ventricular Assist Device Support. Cardiovasc. Diagn. Ther. 2021, 11, 148–163. [Google Scholar] [CrossRef]
- Klabunde, R. Cardiovascular Physiology Concepts, 2nd ed.; LWW: Philadelphia, PA, USA, 2011; ISBN 978-1-4511-1384-6. [Google Scholar]
- Ursino, M. Interaction between Carotid Baroregulation and the Pulsating Heart: A Mathematical Model. Am. J. Physiol. 1998, 275, H1733–H1747. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, S.; Safak, K.K. Evaluating the Hemodynamical Response of a Cardiovascular System under Support of a Continuous Flow Left Ventricular Assist Device via Numerical Modeling and Simulations. Comput. Math. Methods Med. 2013, 2013, e986430. [Google Scholar] [CrossRef] [PubMed]
- FDA. Medtronic Stops Distribution and Sale of HeartWare HVAD System Due to Risk of Neurological Adverse Events, Mortality, and Potential Failure to Restart; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Di Molfetta, A.; Ferrari, G.; Iacobelli, R.; Filippelli, S.; Fresiello, L.; Guccione, P.; Toscano, A.; Amodeo, A. Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients. Artif. Organs 2017, 41, 242–252. [Google Scholar] [CrossRef]
Emax [mmHg/mL] | Emin [mmHg/mL] | A [mmHg] | B [1/mL] | V0 [mL] | l [cm] | K | R [mmHg s/mL] | L [mmHgs2/mL] | C [mL/mmHg] | |
---|---|---|---|---|---|---|---|---|---|---|
LA | 0.4 | 0.2 | - | - | 3 | 4.5 | 2.5 | - | - | - |
LV | 3.5 (1.3 a) | - | 1 (0.85 a) | 0.02 | 10 (17 a) | 7 | 1.5 (1.4 a) | - | - | - |
RA | 0.4 | 0.2 | - | - | 3 | 4.5 | 2.5 | - | - | - |
RV | 1.4 | - | 1 | 0.02 | 25 | 7 | 3.25 | - | - | - |
MV | - | - | - | - | - | - | - | 0.002 | - | - |
AV | - | - | - | - | - | - | - | 0.002 | - | - |
TV | - | - | - | - | - | - | - | 0.001 | - | - |
PV | - | - | - | - | - | - | - | 0.001 | - | - |
Ao | - | - | - | - | - | - | - | 0.05 | 1E-5 | 0.13 |
AS | - | - | - | - | - | - | - | 0.95 b (1.4 a) | 1E-5 | 1.13 |
VS | - | - | - | - | - | - | - | 0.05 | - | 19.35 |
Po | - | - | - | - | - | - | - | 0.01 | 1E-5 | 3.33 |
AP | - | - | - | - | - | - | - | 0.15 | 1E-5 | 0.13 |
VP | - | - | - | - | - | - | - | 0.05 | - | 19.35 |
MAP [mmHg] | PP [mmHg] | CO/MPO [L/min] | EDV [mL] | ESV [mL] | EDD [cm] | ESD [cm] | |
---|---|---|---|---|---|---|---|
Healthy CVS | 82 | 43 | 4.41 | 92 | 37 | 4.1 | 2.6 |
DCM CVS | 80 | 31 | 3.06 | 125 | 86 | 4.9 | 4.1 |
HVAD | 81 | 11 | 4.38 | 91 | 56 | 4.2 | 3.3 |
HVAD Lavare | 81 | 15 * | 4.37 | 100 * | 53 * | 4.4 * | 3.2 * |
HM2 | 82 | 14 | 4.40 | 92 | 54 | 4.2 | 3.2 |
HM3 | 82 | 6 | 4.42 | 89 | 58 | 4.2 | 3.4 |
HM3 Artificial Pulse | 81 | 20 * | 4.38 | 98 * | 56 * | 4.4 * | 3.3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şafak, K.K.; Aluç, M.C.; Bozkurt, S. Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Appl. Sci. 2022, 12, 1937. https://doi.org/10.3390/app12041937
Şafak KK, Aluç MC, Bozkurt S. Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Applied Sciences. 2022; 12(4):1937. https://doi.org/10.3390/app12041937
Chicago/Turabian StyleŞafak, Koray K., Mehmet Can Aluç, and Selim Bozkurt. 2022. "Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices" Applied Sciences 12, no. 4: 1937. https://doi.org/10.3390/app12041937
APA StyleŞafak, K. K., Aluç, M. C., & Bozkurt, S. (2022). Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Applied Sciences, 12(4), 1937. https://doi.org/10.3390/app12041937