Optimization of Spot Efficiency of Double-Helix Point Spread Function and Its Application in Intracellular Imaging
Abstract
:1. Introduction
2. Optimization of the Positioning Method of the Nano-Scale Double-Helix Point Spread Function
2.1. Optimization of Double Spot Main Lobes Efficiency
2.2. Algorithm Simulation and Optimization Results
3. Experiment and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carr, A.R.; Ponjavic, A.; Basu, S.; McColl, J.; Santos, A.M.; Davis, S.; Laue, E.D.; Klenerman, D.; Lee, S.F. Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function. Biophys. J. 2017, 112, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Jeevanandam, J.; San Chan, Y.; Danquah, M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016, 128, 99–112. [Google Scholar] [CrossRef]
- Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control Release 2007, 121, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Toy, R.; Peiris, P.M.; Ghaghada, K.B.; Karathanasis, E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014, 9, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Soetikno, B.T.; Chen, X.; Backman, V.; Sun, C.; Zhang, H.F. Parallel Three-Dimensional Tracking of Quantum Rods Using Polarization-Sensitive Spectroscopic Photon Localization Microscopy. ACS Photonics 2017, 4, 1747–1752. [Google Scholar] [CrossRef]
- Opatovski, N.; Ezra, Y.S.; Weiss, L.E.; Ferdman, B.; Orange-Kedem, R.; Shechtman, Y. Multiplexed PSF Engineering for Three-Dimensional Multicolor Particle Tracking. Nano Lett. 2021, 21, 5888–5895. [Google Scholar] [CrossRef]
- Yang, J.; Ling, Z.; Li, B.Q.; Li, R.; Mei, X. Nanoscale 3D temperature gradient measurement based on fluorescence spectral characteristics of the CdTe quantum dot probe. Opt. Express 2019, 27, 6770–6791. [Google Scholar] [CrossRef]
- Hu, Y.; Li, S.; Kuang, C.; Xiu, P.; Ge, J.; Liu, X. An axial displacement measurement relying on the double-helix light beam. Opt. Laser Technol. 2014, 59, 1–6. [Google Scholar] [CrossRef]
- Gustavsson, A.-K.; Petrov, P.N.; Lee, M.Y.; Shechtman, Y.; Moerner, W.E. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 2018, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Tauzin, L.J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C.F. Single Particle Tracking: From Theory to Biophysical Applications. Chem. Rev. 2017, 117, 7331–7376. [Google Scholar] [CrossRef]
- Pavani, S.R.P.; Piestun, R. High-efficiency rotating point spread functions. Opt. Express 2008, 16, 3484–3489. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Y.; Liang, Y.; Dan, D.; Yao, B.; Lei, M. Aberration correction method based on double-helix point spread function. J. Biomed. Opt. 2019, 24, 031005. [Google Scholar] [CrossRef] [Green Version]
- Piestun, R.; Schechner, Y.Y.; Shamir, J. Propagation-invariant wave fields with finite energy. J. Opt. Soc. Am. A—Opt. Image Sci. Vis. 2000, 17, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.S.; Liu, X.; He, J.L.; Wang, H.T. Optimal annulus structures of optical vortices. Opt. Express 2004, 12, 4625–4634. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Soifer, V.A.; Tuvey, C.S.; Davis, J.A. Sidelobe contrast reduction for optical vortex beams using a helical axicon. Opt. Lett. 2007, 32, 921–923. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, X.C.; Zhao, X.; Fang, Z.L.; Zhu, S.W. Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions. Opt. Lett. 2009, 34, 3289–3291. [Google Scholar] [CrossRef]
- Azucena, O.; Crest, J.; Kotadia, S.; Sullivan, W.; Tao, X.; Reinig, M.; Gavel, D.; Olivier, S.; Kubby, J. Adaptive optics wide-field microscopy using direct wavefront sensing. Opt. Lett. 2011, 36, 825–827. [Google Scholar] [CrossRef]
- Azucena, O.; Crest, J.; Cao, J.; Sullivan, W.; Kner, P.; Gavel, D.; Dillon, D.; Olivier, S.; Kubby, J. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons. Opt. Express 2010, 18, 17521–17532. [Google Scholar] [CrossRef] [Green Version]
- Schallek, J.; Geng, Y.; HoanVu, N.; Williams, D.R. Morphology and Topography of Retinal Pericytes in the Living Mouse Retina Using In Vivo Adaptive Optics Imaging and Ex Vivo Characterization. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8237–8250. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, J.; Wu, C.; Chen, Z.; Zhang, X.; Shen, H.-l.; Gong, W.; Si, K. Wavefront reconstruction based on deep transfer learning for microscopy. Opt. Express 2020, 28, 20738–20747. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, T.; Fang, L.; Kong, L.; Xie, H.; Dai, Q. Conformal convolutional neural network (CCNN) for single-shot sensorless wavefront sensing. Opt. Express 2020, 28, 19218–19228. [Google Scholar] [CrossRef] [PubMed]
- Qin, H. Aberration correction of a single aspheric lens with particle swarm algorithm. Opt. Commun. 2012, 285, 2996–3000. [Google Scholar] [CrossRef]
- Bi, J.; Gao, Z.; Zhu, D.; Ma, J.; Yuan, Q.; Guo, Z.; Qu, Y.; Yin, C.; Xu, Y. An Optical Coherence Tomographic Aberration Correction Method Based on the Particle Swarm Optimization Algorithm. Acta Opt. Sin. 2020, 40, 1011002. [Google Scholar]
- Ke, X.; Zhao, J. Analysis on characteristic of Laguerre-Gaussian beams with topological charges of arithmetic progression. Optik 2019, 183, 302–310. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Khonina, S.N.; Kovalev, A.A.; Soifer, V.A.; Elfstrom, H.; Turunen, J. Diffraction of a plane, finite-radius wave by a spiral phase plate. Opt. Lett. 2006, 31, 1597–1599. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Skidanov, R.V.; Moiseev, O.Y.; Soifer, V.A. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate. J. Opt. Soc. Am. Opt. Image Sci. Vis. 2007, 24, 1955–1964. [Google Scholar] [CrossRef]
- Yang, J.; Ling, Z.; Li, R.; Mei, X. 3D localization at the nanometer scale and thermal sensing of living cells. J. Phys. Appl. Phys. 2019, 52, 365401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Du, H.; Chai, Z.; Zhang, L.; Li, B.Q.; Cui, J.; Mei, X. Optimization of Spot Efficiency of Double-Helix Point Spread Function and Its Application in Intracellular Imaging. Appl. Sci. 2022, 12, 1778. https://doi.org/10.3390/app12041778
Yang J, Du H, Chai Z, Zhang L, Li BQ, Cui J, Mei X. Optimization of Spot Efficiency of Double-Helix Point Spread Function and Its Application in Intracellular Imaging. Applied Sciences. 2022; 12(4):1778. https://doi.org/10.3390/app12041778
Chicago/Turabian StyleYang, Jun, Hanliang Du, Zhenhao Chai, Lei Zhang, Ben Q. Li, Jianlei Cui, and Xuesong Mei. 2022. "Optimization of Spot Efficiency of Double-Helix Point Spread Function and Its Application in Intracellular Imaging" Applied Sciences 12, no. 4: 1778. https://doi.org/10.3390/app12041778
APA StyleYang, J., Du, H., Chai, Z., Zhang, L., Li, B. Q., Cui, J., & Mei, X. (2022). Optimization of Spot Efficiency of Double-Helix Point Spread Function and Its Application in Intracellular Imaging. Applied Sciences, 12(4), 1778. https://doi.org/10.3390/app12041778