Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction
Abstract
:1. Introduction
- -
- The development of two novel hybrid neural network models for solar radiation prediction.
- -
- Integration of CNN with other models to enhance prediction robustness and accuracy.
- -
- Development of solar radiation predictive hybrid models adaptable to different climatic conditions.
- -
- Comparison of these hybrid models and ANN model performances.
2. Materials and Methods
2.1. Artificial Neural Network (ANN)
2.2. Convolutional Neural Network (CNN)
2.3. Long Short-Term Memory (LSTM)
2.4. Area of Study
2.5. Data Preparation
2.6. Research Modeling and Hybrid Neural Network Development
2.6.1. ANN Architectural Design
2.6.2. Hybrid CNN-ANN Architectural Design
2.6.3. Hybrid CNN-LSTM-ANN Architectural Design
2.7. Model Training and Implementation
2.8. Evaluation Metrics
3. Results and Discussion
3.1. Hybrid Neural Network Models’ Performance Overview
3.2. Performance of Hybrid Neural Network Models and Its Comparison for Different Geopolitical Zones
3.3. Performance Comparison of Hybrid Neural Network Models with Existing Literatures
4. Conclusions
- -
- The hybrid models were found to predict solar radiation more accurately than the ANN model. While CNN-ANN had the best performance for seven different countries (Ghana, Nigeria, Chad, CAR, Egypt, Namibia, and South Africa), CNN-LSTM-ANN had the best predictive performance for Algeria, Somalia, and Ethiopia.
- -
- Also, the integration of a flatten layer in the CNN-ANN hybrid model enhanced the predictive performance of this model.
- -
- The two-hybrid models train faster than the ANN model making it more desirable for computation in developing countries.
- -
- Out of all the countries considered in the scope of this study, the application of the CNN-ANN hybrid model in Chad had the overall best performance. The r-value, MAE, RMSE, and MAPE for this case are 0.9930, 15.70 W/m2, 46.84 W/m2, and 4.98 respectively.
- -
- Also, the performance of the model was found to be better for countries with well-distributed solar radiation.
- -
- Finally, the performance of the ANN model developed in this study is also very good, however, the large number (2500) neurons in the hidden layer and the lengthy training period make it undesirable for developing nations. On the other hand, the novel hybrid neural network models presented in this study can achieve a better result with the use of a lesser number of neurons and this makes it more suitable for application in any part of the world.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azimi, R.; Ghayekhloo, M.; Ghofrani, M. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting. Energy Convers. Manag. 2016, 118, 331–344. [Google Scholar] [CrossRef]
- González, I.; Calderón, A.J.; Portalo, J.M. Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid. Sustainability 2021, 13, 2234. [Google Scholar] [CrossRef]
- Polimeni, S.; Nespoli, A.; Leva, S.; Valenti, G.; Manzolini, G.; Polimeni, S.; Nespoli, A.; Leva, S.; Valenti, G.; Manzolini, G. Implementation of Different PV Forecast Approaches in a MultiGood MicroGrid: Modeling and Experimental Results. Processes 2021, 9, 323. [Google Scholar] [CrossRef]
- Bamisile, O.; Oluwasanmi, A.; Obiora, S.; Osei-Mensah, E.; Asoronye, G.; Huang, Q. Application of deep learning for solar irradiance and solar photovoltaic multi-parameter forecast. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–21. [Google Scholar] [CrossRef]
- Benmouiza, K.; Cheknane, A. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers. Manag. 2013, 75, 561–569. [Google Scholar] [CrossRef]
- Innovation Village. NiMet. Nigeria Only Has 54 Weather Stations Instead of 9000. 2017. Available online: https://innovation-village.com/nigeria-54-weather-stations-instead-9000-nimet/#:~:text=Instead%20of%20the%20minimum%209%2C000,Nigerian%20Meteorological%20Agency%20(NiMet).=He%20revealed%20that%20the%20agency,large%20population%20and%20surface%20area (accessed on 15 May 2020).
- Hodge, B.-M.; Martinez-Anido, C.B.; Wang, Q.; Chartan, E.; Florita, A.; Kiviluoma, J. The combined value of wind and solar power forecasting improvements and electricity storage. Appl. Energy 2018, 214, 1–15. [Google Scholar] [CrossRef]
- Lan, H.; Zhang, C.; Hong, Y.-Y.; He, Y.; Wen, S. Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network. Appl. Energy 2019, 247, 389–402. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Gao, W.; Darvishan, A.; Toghani, M.; Mohammadi, M.; Abedinia, O.; Ghadimi, N. Different states of multi-block based forecast engine for price and load prediction. Int. J. Electr. Power Energy Syst. 2019, 104, 423–435. [Google Scholar] [CrossRef]
- Agüera-Pérez, A.; Palomares-Salas, J.; de la Rosa, J.J.G.; Florencias-Oliveros, O. Weather forecasts for microgrid energy management: Review, discussion and recommendations. Appl. Energy 2018, 228, 265–278. [Google Scholar] [CrossRef]
- Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130–142. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- VanDeventer, W.; Jamei, E.; Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Soon, T.K.; Horan, B.; Mekhilef, S.; Stojcevski, A. Short-term PV power forecasting using hybrid GASVM technique. Renew. Energy 2019, 140, 367–379. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Petković, D. Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew. Sustain. Energy Rev. 2015, 51, 1784–1791. [Google Scholar] [CrossRef]
- Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279–289. [Google Scholar] [CrossRef]
- Lee, J.; Wang, W.; Harrou, F.; Sun, Y. Reliable solar irradiance prediction using ensemble learning-based models: A comparative study. Energy Convers. Manag. 2020, 208, 112582. [Google Scholar] [CrossRef] [Green Version]
- Bendiek, P.; Taha, A.; Abbasi, Q.H. Applied sciences Solar Irradiance Forecasting Using a Data-Driven Algorithm and Contextual Optimisation. Appl. Sci. 2022, 12, 134. [Google Scholar] [CrossRef]
- Aljanad, A.; Tan, N.; Agelidis, V.; Shareef, H. Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm. Energies 2021, 14, 1213. [Google Scholar] [CrossRef]
- Bamisile, O.; Oluwasanmi, A.; Ejiyi, C.; Yimen, N.; Obiora, S.; Huang, Q. Comparison of machine learning and deep learning algorithms for hourly global/diffuse solar radiation predictions. Int. J. Energy Res. 2021. [Google Scholar] [CrossRef]
- Gürel, A.E.; Ağbulut, Ü.; Biçen, Y. Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation. J. Clean. Prod. 2020, 277, 122353. [Google Scholar] [CrossRef]
- Dong, N.; Chang, J.-F.; Wu, A.-G.; Gao, Z.-K. A novel convolutional neural network framework based solar irradiance prediction method. Int. J. Electr. Power Energy Syst. 2020, 114, 105411. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Dai, Y.; Wang, B.; Zheng, T.; Liao, Q.; Liang, Y.; Zhang, F.; Song, X. Time series prediction for output of multi-region solar power plants. Appl. Energy 2019, 257, 114001. [Google Scholar] [CrossRef]
- Irena. Solar Pv in Africa: Costs and Market; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2016. [Google Scholar]
- Higashiyama, K.; Fujimoto, Y.; Hayashi, Y. Feature Extraction of NWP Data for Wind Power Forecasting Using 3D-Convolutional Neural Networks. Energy Procedia 2018, 155, 350–358. [Google Scholar] [CrossRef]
- Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Segal-Rozenhaimer, M.; Li, A.; Das, K.; Chirayath, V. Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (CNN). Remote Sens. Environ. 2019, 237, 111446. [Google Scholar] [CrossRef]
- Jain, A.; Mao, J.; Mohiuddin, K. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.K.; Chandel, S. Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain. Energy Rev. 2014, 33, 772–781. [Google Scholar] [CrossRef]
- Yadav, A.K.; Malik, H.; Chandel, S. Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew. Sustain. Energy Rev. 2014, 31, 509–519. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wei, H.; Wang, H.; Zhu, T.; Zhang, K. 3D-CNN-based feature extraction of ground-based cloud images for direct normal irradiance prediction. Sol. Energy 2019, 181, 510–518. [Google Scholar] [CrossRef]
- Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.; Song, X.; Ward, R. Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, S.; Mukhopadhyay, P.; Dinara, S.M.; Bag, A.; Mahata, M.K.; Biswas, D. Trapping effect analysis of AlGaN/InGaN/GaN Heterostructure by conductance frequency measurement. MRS Proc. XXXIII 2014, 2, 81–87. [Google Scholar]
- Hafner, M.; Tagliapietra, S.; de Strasser, L. Prospects for Renewable Energy in Africa. In Energy in Africa: Challenges and Opportunities; Springer International Publishing: Cham, Switzerland, 2018; pp. 47–75. [Google Scholar]
- Liu, Z. Global Energy Interconnection; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- European Commission. Photovoltaic Geographical Information System; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Thotakura, S.; Kondamudi, S.C.; Xavier, J.F.; Quanjin, M.; Reddy, G.R.; Gangwar, P.; Davuluri, S.L. Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India. Case Stud. Therm. Eng. 2020, 18, 100602. [Google Scholar] [CrossRef]
- Mishra, M.; Nayak, J.; Naik, B.; Abraham, A. Deep learning in electrical utility industry: A comprehensive review of a decade of research. Eng. Appl. Artif. Intell. 2020, 96, 104000. [Google Scholar] [CrossRef]
- McKay, J. The Effect of Solar Radiation and Wind Speed on Air Temperature Rise in Outdoor Cabinets Containing Telephone Equipment. In Proceedings of the 10th International Telecommunications Energy Conference, San Diego, CA, USA, 30 October–2 November 1988. [Google Scholar] [CrossRef]
- Lippmann, R.P. An introduction to computing with neural nets. ACM SIGARCH Comput. Arch. News 1988, 16, 7–25. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Raj, N.; Mi, J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl. Energy 2019, 253, 113541. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2015. [Google Scholar]
- Meenal, R.; Selvakumar, A.I. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew. Energy 2018, 121, 324–343. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2020. [Google Scholar]
- Blal, M.; Khelifi, S.; Dabou, R.; Sahouane, N.; Slimani, A.; Rouabhia, A.; Ziane, A.; Neçaibia, A.; Bouraiou, A.; Tidjar, B. A prediction models for estimating global solar radiation and evaluation meteorological effect on solar radiation potential under several weather conditions at the surface of Adrar environment. Measurement 2019, 152, 107348. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [Google Scholar] [CrossRef]
- Feng, Y.; Gong, D.; Zhang, Q.; Jiang, S.; Zhao, L.; Cui, N. Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers. Manag. 2019, 198, 111780. [Google Scholar] [CrossRef]
- Guijo-Rubio, D.; Durán-Rosal, A.; Gutiérrez, P.; Gómez-Orellana, A.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S.; Hervás-Martínez, C. Evolutionary artificial neural networks for accurate solar radiation prediction. Energy 2020, 210, 118374. [Google Scholar] [CrossRef]
- Ağbulut, A.E.; Gürel, A.E.; Biçen, Y. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew. Sustain. Energy Rev. 2020, 135, 110114. [Google Scholar] [CrossRef]
Geopolitical Zone | Country | City | Latitude (°) | Longitude (°) | Elevation (m) | Optimum Azimuth (deg.) | Optimum Slope (deg.) |
---|---|---|---|---|---|---|---|
West Africa | Ghana (GH) | Bongo | 10.903 | −0.812 | 216 | 6 | 16 |
West Africa | Nigeria (NG) | Kano | 12.022 | 8.524 | 465 | 5 | 16 |
East Africa | Ethiopia (ETH) | Djibouti | 10.647 | 41.286 | 538 | 0 | 13 |
East Africa | Somalia (SOM) | Bari | 10.271 | 50.141 | 308 | −4 | 12 |
Central Africa | Chad (CH) | Ennedi | 18.064 | 22.576 | 545 | 3 | 20 |
Central Africa | Central African Republic (CAR) | Vakaga | 9.826 | 22.508 | 494 | 8 | 16 |
North Africa | Algeria (ALG) | Tamanrasset | 24.072 | 4.679 | 874 | 26 | 27 |
North Africa | Egypt (EGY) | Mut | 24.475 | 28.466 | 332 | 5 | 25 |
Southern Africa | South Africa (SA) | Northern Cape | −29.186 | 20.464 | 874 | −180 | 0 |
Southern Africa | Namibia (NAM) | Erongo Region | −21.963 | 15.331 | 1179 | −180 | 0 |
Country | Statistics | G_i (W/m2) | As (deg.) | Tamb (deg. C) | W10 (m/s) |
---|---|---|---|---|---|
Algeria | Mean | 296.15 | 19.14 | 26.34 | 3.97 |
Std | 386.39 | 24.82 | 8.98 | 1.71 | |
Min | 0 | −4.95 | −0.18 | 0.06 | |
Max | 1966.4 | 85.46 | 44.94 | 12.59 | |
Central African Republic | Mean | 264.24 | 20.47 | 27.75 | 3.063 |
Std | 358.36 | 26.17 | 4.82 | 1.443 | |
Min | 0 | −5.53 | 14.36 | 0.010 | |
Max | 1812.9 | 84.39 | 44.17 | 10.47 | |
Chad | Mean | 305.4 | 19.68 | 26.13 | 4.751 |
Std | 393.25 | 25.42 | 8.128 | 1.584 | |
Min | 0 | −5.13 | 3.03 | 0.60 | |
Max | 1916.1 | 85.73 | 43.56 | 11.63 | |
Egypt | Mean | 303.94 | 18.76 | 22.09 | 4.595 |
Std | 392.18 | 24.38 | 8.756 | 1.588 | |
Min | 0 | −5.07 | −1.10 | 0.04 | |
Max | 1753.6 | 88.95 | 43.11 | 13.31 | |
Ethiopia | Mean | 278.41 | 20.42 | 29.04 | 3.516 |
Std | 363.85 | 26.12 | 5.29 | 1.451 | |
Min | 0 | −80 | 13.42 | 0.04 | |
Max | 1130.5 | 83.17 | 41.14 | 9.48 | |
Ghana | Mean | 260.59 | 20.39 | 28.26 | 2.797 |
Std | 350.14 | 26.15 | 4.461 | 1.095 | |
Min | 0 | −6.29 | 14.64 | 0.03 | |
Max | 1735.3 | 89.49 | 42.8 | 8.21 | |
Namibia | Mean | 276.01 | 18.95 | 21.09 | 3.477 |
Std | 362.98 | 24.63 | 6.297 | 1.924 | |
Min | 0 | −5.93 | 0.75 | 0.010 | |
Max | 2002 | 89.53 | 41.03 | 12.41 | |
Nigeria | Mean | 272.79 | 20.31 | 27.31 | 2.875 |
Std | 362.05 | 26.03 | 5.83 | 1.047 | |
Min | 0 | −5.28 | 9.41 | 0.040 | |
Max | 1911 | 85.82 | 43.95 | 8.18 | |
South Africa | Mean | 259.16 | 17.60 | 19.60 | 4.46 |
Std | 346.94 | 23.06 | 8.29 | 1.932 | |
Min | 0 | −5.87 | −2.52 | 0.040 | |
Max | 1911 | 82.20 | 42.86 | 17.21 | |
Somalia | Mean | 289.88 | 20.44 | 26.85 | 5.922 |
Std | 372.68 | 26.19 | 4.52 | 3.093 | |
Min | 0 | −80.81 | 13.42 | 0.010 | |
Max | 1157.9 | 89.02 | 39.53 | 16.66 |
Region | Country | Model | Optimal No. Epoch | Training/Testing Time (s) |
---|---|---|---|---|
West Africa | Ghana | ANN | 1000 | 3000 |
CNN-ANN | 600 | 600 | ||
CNN-LSTM-ANN | 100 | 200 | ||
Nigeria | ANN | 350 | 1050 | |
CNN-ANN | 200 | 200 | ||
CNN-LSTM-ANN | 600 | 1200 | ||
East Africa | Ethiopia | ANN | 450 | 1350 |
CNN-ANN | 600 | 600 | ||
CNN-LSTM-ANN | 600 | 1200 | ||
Somalia | ANN | 250 | 2250 | |
CNN-ANN | 250 | 250 | ||
CNN-LSTM-ANN | 600 | 1200 | ||
Central Africa | Chad | ANN | 300 | 900 |
CNN-ANN | 500 | 500 | ||
CNN-LSTM-ANN | 150 | 300 | ||
Central African Republic | ANN | 650 | 1950 | |
CNN-ANN | 650 | 1950 | ||
CNN-LSTM-ANN | 300 | 600 | ||
North Africa | Algeria | ANN | 300 | 900 |
CNN-ANN | 1000 | 1000 | ||
CNN-LSTM-ANN | 300 | 900 | ||
Egypt | ANN | 570 | 1700 | |
CNN-ANN | 600 | 1800 | ||
CNN-LSTM-ANN | 380 | 1600 | ||
Southern Africa | South Africa | ANN | 500 | 5000 |
CNN-ANN | 300 | 3000 | ||
CNN-LSTM-ANN | 600 | 1200 | ||
Namibia | ANN | 500 | 1500 | |
CNN-ANN | 300 | 300 | ||
CNN-LSTM-ANN | 600 | 1200 |
Region | Country | Model | Evaluation Metrics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
r | MAE | RMSE | MAPE | ΔMAE | ΔRMSE | |||||
West Africa | Ghana | ANN | 0.9675 | 39.22 | 88.88 | 15.05 | 0.1089 | 0.071 | 0.0028 | 0.0008 |
CNN-ANN | 0.9682 | 37.74 | 87.54 | 14.39 | 0.022 | 0.612 | 0.0006 | 0.0069 | ||
CNN-LSTM-ANN | 0.9675 | 36.52 | 88.53 | 14.13 | 0.848 | 1.571 | 0.0227 | 0.0174 | ||
Nigeria | ANN | 0.9792 | 32.06 | 73.57 | 11.754 | 1.384 | 4.519 | 0.0414 | 0.0579 | |
CNN-ANN | 0.9762 | 30.99 | 78.795 | 11.311 | 0.063 | 0.635 | 0.0020 | 0.0081 | ||
CNN-LSTM-ANN | 0.9762 | 31.73 | 78.55 | 11.60 | 2.457 | 7.423 | 0.0840 | 0.1044 | ||
East Africa | Ethiopia | ANN | 0.9787 | 28.13 | 73.81 | 10.28 | 0.615 | 2.601 | 0.0224 | 0.0365 |
CNN-ANN | 0.9792 | 29.41 | 73.74 | 10.60 | 2.138 | 6.785 | 0.074 | 0.1013 | ||
CNN-LSTM-ANN | 0.9800 | 25.89 | 72.27 | 9.31 | 1.534 | 5.508 | 0.063 | 0.0825 | ||
Somalia | ANN | 0.9898 | 22.21 | 52.801 | 7.78 | 0.374 | 2.626 | 0.0166 | 0.0474 | |
CNN-ANN | 0.9894 | 19.94 | 54.119 | 6.908 | 0.0628 | 0.1085 | 0.00314 | 0.0020 | ||
CNN-LSTM-ANN | 0.9904 | 16.60 | 51.54 | 5.725 | 0.219 | 1.879 | 0.0130 | 0.0352 | ||
Central Africa | Chad | ANN | 0.9939 | 17.07 | 42.99 | 5.62 | 0.991 | 5.843 | 0.055 | 0.1196 |
CNN-ANN | 0.9930 | 15.70 | 46.84 | 5.04 | 0.1981 | 0.884 | 0.0128 | 0.0185 | ||
CNN-LSTM-ANN | 0.9921 | 15.23 | 49.08 | 4.98 | 0.0988 | 0.4797 | 0.006 | 0.0097 | ||
Central African Republic | ANN | 0.9667 | 44.53 | 91.46 | 16.92 | 0.9837 | 0.8588 | 0.0216 | 0.0093 | |
CNN-ANN | 0.9675 | 39.83 | 89.99 | 15.24 | 0.3056 | 0.3136 | 0.0077 | 0.0035 | ||
CNN-LSTM-ANN | 0.9662 | 39.71 | 92.43 | 14.98 | 0.2792 | 0.8224 | 0.0071 | 0.0090 | ||
North Africa | Algeria | ANN | 0.9815 | 30.19 | 73.94 | 10.24 | 0.1382 | 1.8773 | 0.0046 | 0.0261 |
CNN-ANN | 0.9827 | 27.70 | 71.35 | 9.45 | 0.996 | 3.287 | 0.0373 | 0.0483 | ||
CNN-LSTM-ANN | 0.9830 | 32.05 | 71.03 | 10.76 | 0.3594 | 2.6834 | 0.0111 | 0.0364 | ||
Egypt | ANN | 0.9914 | 17.64 | 50.88 | 5.86 | 0.4002 | 2.788 | 0.0232 | 0.0580 | |
CNN-ANN | 0.9925 | 17.25 | 48.33 | 5.56 | 0.7367 | 1.567 | 0.045 | 0.034 | ||
CNN-LSTM-ANN | 0.9919 | 17.37 | 49.59 | 5.74 | 0.3298 | 1.648 | 0.0194 | 0.034 | ||
Southern Africa | South Africa | ANN | 0.9732 | 28.22 | 79.49 | 10.99 | 1.332 | 6.922 | 0.0495 | 0.0954 |
CNN-ANN | 0.9782 | 26.41 | 72.80 | 9.98 | 0.356 | 0.221 | 0.0137 | 0.0030 | ||
CNN-LSTM-ANN | 0.9769 | 26.64 | 74.25 | 10.22 | 0.949 | 2.898 | 0.037 | 0.041 | ||
Namibia | ANN | 0.9752 | 31.41 | 80.12 | 11.47 | 1.084 | 4.998 | 0.0357 | 0.0665 | |
CNN-ANN | 0.9793 | 26.27 | 73.54 | 9.49 | 0.1378 | 0.4651 | 0.0052 | 0.0062 | ||
CNN-LSTM-ANN | 0.9791 | 29.05 | 73.31 | 10.67 | 0.426 | 1.734 | 0.0145 | 0.0231 |
Research | Country | Model | Evaluation Metrics | ||
---|---|---|---|---|---|
r | RMSE | MAPE | |||
Olatomiwa et al. [50] | Nigeria | SVM-FFA | 0.7280 | 1.8661 MJ/m2 | 11.52% |
ANN | 0.6496 | 2.0458 MJ/m2 | 13.43% | ||
GP | 0.6899 | 1.9532 MJ/m2 | 13.21% | ||
G-Rubio et al. [52] | Spain | EANN | 0.9598 | 85.71 W/m2 | - |
MLP | 0.9749 | 67.69 W/m2 | - | ||
Agbulut et al. [53] | Turkey | ANN | 0.9397 | 2.776 MJ/m2 | 23.33% |
KNN | 0.9247 | 3.092 MJ/m2 | 27.74% | ||
SVM | 0.9380 | 2.820 MJ/m2 | 23.37% | ||
Feng et al. [51] | China | ANN | 0.9402 | 2.855 MJ/m2/day | - |
MEA-ANN | 0.9407 | 2.814 MJ/m2/day | - | ||
RF | 0.9284 | 3.103 MJ/m2/day | - | ||
WNN | 0.9391 | 2.839 MJ/m2/day | - | ||
Blal et al. [49] | Algeria | TM4 | 0.9111 | 2.3643 MJ/m2 | - |
TM5 | 0.8740 | 2.7879 MJ/m2 | - | ||
TM6 | 0.8954 | 2.5543 MJ/m2 | - | ||
Present study | Chad | ANN | 0.9939 | 42.99 W/m2 | 5.62% |
CNN-ANN | 0.9930 | 46.84 W/m2 | 5.04% | ||
CNN-LSTM-ANN | 0.9921 | 49.08 W/m2 | 4.98% | ||
Algeria | ANN | 0.9815 | 73.94 W/m2 | 10.24% | |
CNN-ANN | 0.9827 | 71.35 W/m2 | 9.45% | ||
CNN-LSTM-ANN | 0.9830 | 71.03 W/m2 | 10.76% | ||
Egypt | ANN | 0.9914 | 50.88 W/m2 | 5.86% | |
CNN-ANN | 0.9925 | 48.33 W/m2 | 5.56% | ||
CNN-LSTM-ANN | 0.9919 | 49.59 W/m2 | 5.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, M.; Oluwasanmi, A.; Yimen, N.; Qinxiu, Z.; Ukwuoma, C.C.; Ezurike, B.; Bamisile, O. Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction. Appl. Sci. 2022, 12, 1435. https://doi.org/10.3390/app12031435
Mukhtar M, Oluwasanmi A, Yimen N, Qinxiu Z, Ukwuoma CC, Ezurike B, Bamisile O. Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction. Applied Sciences. 2022; 12(3):1435. https://doi.org/10.3390/app12031435
Chicago/Turabian StyleMukhtar, Mustapha, Ariyo Oluwasanmi, Nasser Yimen, Zhang Qinxiu, Chiagoziem C. Ukwuoma, Benjamin Ezurike, and Olusola Bamisile. 2022. "Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction" Applied Sciences 12, no. 3: 1435. https://doi.org/10.3390/app12031435
APA StyleMukhtar, M., Oluwasanmi, A., Yimen, N., Qinxiu, Z., Ukwuoma, C. C., Ezurike, B., & Bamisile, O. (2022). Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction. Applied Sciences, 12(3), 1435. https://doi.org/10.3390/app12031435