A Machine Learning-Based Correction Method for High-Frequency Surface Wave Radar Current Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. LSTM Neural Network
2.3. Empirical Orthogonal Function (EOF) Ellipse
3. Results
3.1. Corrections for Two Single Points
3.2. Corrections for the Whole Domain
3.3. Sensitivity Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crombie, D.D. Doppler Spectrum of Sea Echo at 13.56 Mc./s. Nature 1955, 175, 681–682. [Google Scholar] [CrossRef]
- Wait, J.R. Theory of HF ground wave backscatter from sea waves. J. Geophys. Res. 1966, 71, 4839–4842. [Google Scholar] [CrossRef]
- Barrick, D.E. Theory of HF and VHF Propagation Across the Rough Sea, 1, The Effective Surface Impedance for a Slightly Rough Highly Conducting Medium at Grazing Incidence. Radio Sci. 1971, 6, 517–526. [Google Scholar] [CrossRef]
- Barrick, D.E. Theory of HF and VHF Propagation Across the Rough Sea, 2, Application to HF and VHF Propagation Above the Sea. Radio Sci. 1971, 6, 527–533. [Google Scholar] [CrossRef]
- Lipa, B.J.; Barrick, D.E. Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio Sci. 1986, 21, 81–100. [Google Scholar] [CrossRef]
- Fan, S.; Xiao, N.; Dong, S. A novel model to predict significant wave height based on long short-term memory network. Ocean Eng. 2020, 205, 107298. [Google Scholar] [CrossRef]
- Christoph, J.; Cordula, B.; Britta, S. Prediction and reconstruction of ocean wave heights based on bathymetric data using LSTM neural networks. Ocean Eng. 2021, 232, 109046. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, Z.; Ran, X.; Fu, M.; Yang, S.; Chu, S.; Hui, L.; Yang, Y. BP neural network applied to ADCP wave measurement when background current exists. In Proceedings of the 3rd IEEE Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 3–5 October 2017; pp. 55–58. [Google Scholar]
- Wen, B.; Tang, W.; Tian, Y. Significant wave height field inversion of high frequency radar based on BP neural network. J. Huazhong Univ. Sci. Technology. Nat. Sci. 2019, 41, 138–145. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Z.; Chen, X. Wave Height Estimation From X-Band Nautical Radar Images Using Temporal Convolutional Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11395–11405. [Google Scholar] [CrossRef]
- Thongniran, N.; Vateekul, P.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P. Spatio-Temporal Deep Learning for Ocean Current Prediction Based on HF Radar Data. In Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi, Thailand, 10–12 July 2019; pp. 254–259. [Google Scholar]
- Thongniran, N.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Combining Attentional CNN and GRU Networks for Ocean Current Prediction Based on HF Radar Observations. In Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, Beijing, China, 23 October 2019; pp. 440–446. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, X.; Yue, X.; Zhang, L. Spatial interpolation of current mapped by HF surface wave radar using BP neural network. Haiyang Xuebao 2019, 41, 138–145. [Google Scholar] [CrossRef]
- Hardman, R.L.; Wyatt, L.R. Inversion of HF Radar Doppler Spectra Using a Neural Network. J. Mar. Sci. Eng. 2019, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Gurgel, K.W.; Voulgaris, G.; Schlick, T.; Stammer, D. Wind-speed inversion from HF radar first-order backscatter signal. Ocean Dyn. 2012, 62, 105–121. [Google Scholar] [CrossRef]
- Wyatt, L.R. Progress towards an HF Radar Wind Speed Measurement Method Using Machine Learning. Remote Sens. 2022, 14, 2098. [Google Scholar] [CrossRef]
- Pei, J.; Yang, Y.; Wu, Z.; Ma, Y.; Huo, W.; Zhang, Y.; Huang, Y.; Yang, J. A Sea Clutter Suppression Method Based on Machine Learning Approach for Marine Surveillance Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3120–3130. [Google Scholar] [CrossRef]
- Callaghan, D.; Burger, J.; Mishra, A.K. A Machine Learning Approach to Radar Sea Clutter Suppression. In Proceedings of the IEEE Radar Conference (RadarConf), Seattle, DC, USA, 8–12 May 2017; pp. 1222–1227. [Google Scholar]
- Cenkeramaddi, L.R.; Rai, P.K.; Dayal, A.; Bhatia, J.; Pandya, A.; Soumya, J.; Kumar, A.; Jha, A. A Novel Angle Estimation for mmWave FMCW Radars Using Machine Learning. IEEE Sens. J. 2021, 21, 9833–9843. [Google Scholar] [CrossRef]
- Wang, R.; Wen, B.; Huang, W. A Support Vector Regression-Based Method for Target Direction of Arrival Estimation From HF Radar Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 674–678. [Google Scholar] [CrossRef]
- Carrera, E.V.; Lara, F.; Ortiz, M.; Tinoco, A.; León, R. Target Detection using Radar Processors based on Machine Learning. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020; pp. 1–5. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, T.; Yang, F.; Liu, B.; Wu, L.; Wei, J. Comparisons of Tidal Currents in the Pearl River Estuary between High-Frequency Radar Data and Model Simulations. Appl. Sci. 2022, 12, 6509. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
Area | PCCs | RMSEs (m/s) | ||
---|---|---|---|---|
Radar | LSTM-Corrected | Radar | LSTM-Corrected | |
A | 0.3848 | 0.7614 | 0.2739 | 0.1381 |
B | 0.4759 | 0.8843 | 0.1838 | 0.0906 |
C | 0.2706 | 0.9167 | 0.2108 | 0.0749 |
Experiments | Inputs | PCCs | RMSEs (m/s) |
---|---|---|---|
Exp. #1 | Radar + Winds | 0.7482 | 0.1222 |
Exp. 2 | Radar + Tides | 0.7696 | 0.1312 |
Exp. 3 | Radar + Winds + Tides | 0.8794 | 0.0902 |
Reference | Original radar data | 0.3734 | 0.2174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wei, C.; Yang, F.; Lu, T.; Zhu, L.; Wei, J. A Machine Learning-Based Correction Method for High-Frequency Surface Wave Radar Current Measurements. Appl. Sci. 2022, 12, 12980. https://doi.org/10.3390/app122412980
Yang Y, Wei C, Yang F, Lu T, Zhu L, Wei J. A Machine Learning-Based Correction Method for High-Frequency Surface Wave Radar Current Measurements. Applied Sciences. 2022; 12(24):12980. https://doi.org/10.3390/app122412980
Chicago/Turabian StyleYang, Yufan, Chunlei Wei, Fan Yang, Tianyi Lu, Langfeng Zhu, and Jun Wei. 2022. "A Machine Learning-Based Correction Method for High-Frequency Surface Wave Radar Current Measurements" Applied Sciences 12, no. 24: 12980. https://doi.org/10.3390/app122412980
APA StyleYang, Y., Wei, C., Yang, F., Lu, T., Zhu, L., & Wei, J. (2022). A Machine Learning-Based Correction Method for High-Frequency Surface Wave Radar Current Measurements. Applied Sciences, 12(24), 12980. https://doi.org/10.3390/app122412980