Data-Driven Approach to Modeling Biohydrogen Production from Biodiesel Production Waste: Effect of Activation Functions on Model Configurations
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental and Model Configuration
3. Results and Discussion
3.1. Parametric Analysis and Descriptive Statistics of the Data
3.2. Model Performance
3.3. Comparison of the Best Model with Literature and Implications of the Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry. Ind. Eng. Chem. Res. 2020, 59, 7033–7045. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Raza, M.Y. Analysis of energy related CO2 emissions in Pakistan. J. Clean. Prod. 2019, 219, 981–993. [Google Scholar] [CrossRef]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Zhou, N.; Price, L.; Yande, D.; Creyts, J.; Khanna, N.; Fridley, D.; Lu, H.; Feng, W.; Liu, X.; Hasanbeigi, A.; et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl. Energy 2019, 239, 793–819. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, S.; Wang, Y.; Chen, X. Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China. Energy Econ. 2020, 85, 104590. [Google Scholar] [CrossRef]
- Williams, J.H.; Jones, R.A.; Haley, B.; Kwok, G.; Hargreaves, J.; Farbes, J.; Torn, M.S. Carbon-Neutral Pathways for the United States. AGU Adv. 2021, 2, e2020AV000284. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; Rahim, N.A.B.D.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Queneau, Y.; Han, B. Biomass: Renewable carbon resource for chemical and energy industry. Innovations 2022, 3, 100184. [Google Scholar] [CrossRef]
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef]
- Ahorsu, R.; Medina, F.; Constantí, M. Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies 2018, 11, 3366. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Tabassum, N.; Pothu, R.; Pattnaik, A.; Boddula, R.; Balla, P.; Gundeboyina, R.; Challa, P.; Rajesh, R.; Perugopu, V.; Mameda, N.; et al. Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022, 12, 767. [Google Scholar] [CrossRef]
- Schwengber, C.A.; Alves, H.J.; Schaffner, R.A.; Da Silva, F.A.; Sequinel, R.; Bach, V.R.; Ferracin, R.J. Overview of glycerol reforming for hydrogen production. Renew. Sustain. Energy Rev. 2016, 58, 259–266. [Google Scholar] [CrossRef]
- Sittijunda, S.; Reungsang, A. Media optimization for biohydrogen production from waste glycerol by anaerobic thermophilic mixed cultures. Int. J. Hydrogen Energy 2012, 37, 15473–15482. [Google Scholar] [CrossRef]
- Hossain, S.S.; Ayodele, B.V.; Almithn, A. Predictive Modeling of Bioenergy Production from Fountain Grass Using Gaussian Process Regression: Effect of Kernel Functions. Energies 2022, 15, 5570. [Google Scholar] [CrossRef]
- Hossain, S.K.S.; Ali, S.S.; Rushd, S.; Ayodele, B.V.; Cheng, C.K. Interaction effect of process parameters and Pd-electrocatalyst in formic acid electro-oxidation for fuel cell applications: Implementing supervised machine learning algorithms. Int. J. Energy Res. 2022. [Google Scholar] [CrossRef]
- Cinar, A.C. Training Feed-Forward Multi-Layer Perceptron Artificial Neural Networks with a Tree-Seed Algorithm. Arab. J. Sci. Eng. 2020, 45, 10915–10938. [Google Scholar] [CrossRef]
- Gülcü, Ş. An Improved Animal Migration Optimization Algorithm to Train the Feed-Forward Artificial Neural Networks. Arab. J. Sci. Eng. 2022, 47, 9557–9581. [Google Scholar] [CrossRef]
- Alsaffar, M.A.; Ayodele, B.V.; Mustapa, S.I. Scavenging carbon deposition on alumina supported cobalt catalyst during renewable hydrogen-rich syngas production by methane dry reforming using artificial intelligence modeling technique. J. Clean. Prod. 2020, 247, 119168. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Bayat, R.; Hosseinzadeh-Bandbafha, H.; Afrasyabi, H.; Chau, K.W. Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management—A case study in Tehran Metropolis of Iran. J. Clean. Prod. 2017, 148, 427–440. [Google Scholar] [CrossRef]
- Yogeswari, M.K.; Dharmalingam, K.; Mullai, P. Implementation of artificial neural network model for continuous hydrogen production using confectionery wastewater. J. Environ. Manag. 2019, 252, 109684. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ayodele, B.V.; Cheng, C.K.; Khan, M.R. Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts. Int. J. Hydrogen Energy 2016, 41, 11119–11130. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Lou, Y.; Chen, Y.; Lin, H.; Li, R.; Yu, G. Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN). Bioresour. Technol. 2019, 282, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Aghbashlo, M.; Hosseinpour, S.; Tabatabaei, M.; Dadak, A.; Younesi, H.; Najafpour, G. Multi-objective exergetic optimization of continuous photo-biohydrogen production process using a novel hybrid fuzzy clustering-ranking approach coupled with Radial Basis Function (RBF) neural network. Int. J. Hydrogen Energy 2016, 41, 18418–18430. [Google Scholar] [CrossRef]
- Faris, H.; Aljarah, I.; Mirjalili, S. Improved monarch butterfly optimization for unconstrained global search and neural network training. Appl. Intell. 2018, 48, 445–464. [Google Scholar] [CrossRef]
- Garson, G.D. Comparison of Neural Network Analysis of Social Science Data. Soc. Sci. Comput. Rev. 1991, 9, 399–434. [Google Scholar] [CrossRef]
- Afshar Ebrahimi, A.; Foroutan Ghazvini, S. Experimental attrition study of FCC catalysts through 2D/3D contour plots and response surface models. Powder Technol. 2018, 336, 80–84. [Google Scholar] [CrossRef]
- Tratzi, P.; Ta, D.T.; Zhang, Z.; Torre, M.; Battistelli, F.; Manzo, E.; Paolini, V.; Zhang, Q.; Chu, C.; Petracchini, F. Sustainable additives for the regulation of NH3 concentration and emissions during the production of biomethane and biohydrogen: A review. Bioresour. Technol. 2022, 346, 126596. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Nakamura, N.; Hamoudi, R. A Combination of Multilayer Perceptron, Radial Basis Function Artificial Neural Networks and Machine Learning Image Segmentation for the Dimension Reduction and the Prognosis Assessment of Diffuse Large B-Cell Lymphoma. AI 2021, 2, 106–134. [Google Scholar] [CrossRef]
- Lv, Z.; Xiao, F.; Wu, Z.; Liu, Z.; Wang, Y. Hand gestures recognition from surface electromyogram signal based on self-organizing mapping and radial basis function network. Biomed. Signal Process. Control 2021, 68, 102629. [Google Scholar] [CrossRef]
- Moosavi, S.R.; Wood, D.A.; Ahmadi, M.A.; Choubineh, A. ANN-Based Prediction of Laboratory-Scale Performance of CO2-Foam Flooding for Improving Oil Recovery. Nat. Resour. Res. 2019, 28, 1619–1637. [Google Scholar] [CrossRef]
- Dogo, E.M.; Afolabi, O.J.; Nwulu, N.I.; Twala, B.; Aigbavboa, C.O. A Comparative Analysis of Gradient Descent-Based Optimization Algorithms on Convolutional Neural Networks. In Proceedings of the International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS 2018), Belagavi, India, 21–23 December 2018. [Google Scholar]
- Mele, M.; Magazzino, C.; Schneider, N.; Nicolai, F. Revisiting the dynamic interactions between economic growth and environmental pollution in Italy: Evidence from a gradient descent algorithm. Environ. Sci. Pollut. Res. 2021, 28, 52188–52201. [Google Scholar] [CrossRef]
- Kaloev, M.; Krastev, G. Comparative analysis of activation functions used in the hidden layers of deep neural networks. In Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Rasamoelina, A.D.; Adjailia, F.; Sinčák, P. A review of activation function for artificial neural network. In Proceedings of the 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 23–25 January 2020; pp. 281–286. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Song, Y.; Rong, X. The influence of the activation function in a convolution neural network model of facial expression recognition. Appl. Sci. 2020, 10, 1897. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Cai, Y.; Shi, Q.; Xu, K.; Yu, G.; Ding, Z. Iterative algorithm induced deep-unfolding neural networks: Precoding design for multiuser MIMO systems. IEEE Trans. Wirel. Commun. 2020, 20, 1394–1410. [Google Scholar] [CrossRef]
- Khosravi, A.; Syri, S. Modeling of geothermal power system equipped with absorption refrigeration and solar energy using multilayer perceptron neural network optimized with imperialist competitive algorithm. J. Clean. Prod. 2020, 276, 124216. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Hadavimoghaddam, F.; Atashrouz, S.; Hemmati-Sarapardeh, A.; Abedi, A.; Mohaddespour, A. Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels. Int. J. Hydrogen Energy 2022, 47, 320–338. [Google Scholar] [CrossRef]
- Quadri, T.W.; Olasunkanmi, L.O.; Fayemi, O.E.; Akpan, E.D.; Lee, H.S.; Lgaz, H.; Verma, C.; Guo, L.; Kaya, S.; Ebenso, E.E. Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids. Comput. Mater. Sci. 2022, 214, 111753. [Google Scholar] [CrossRef]
- Ng, C.S.W.; Djema, H.; Amar, M.N.; Ghahfarokhi, A.J. Modeling interfacial tension of the hydrogen-brine system using robust machine learning techniques: Implication for underground hydrogen storage. Int. J. Hydrogen Energy 2022, 47, 39595–39605. [Google Scholar] [CrossRef]
- Rashid, T.; Taqvi SA, A.; Sher, F.; Rubab, S.; Thanabalan, M.; Bilal, M.; ul Islam, B. Enhanced lignin extraction and optimisation from oil palm biomass using neural network modelling. Fuel 2021, 293, 120485. [Google Scholar] [CrossRef]
Model | The Activation Function in the Hidden Layer | The Activation Function in the Outer Layer | Optimization Algorithm for Training | Number of Units in the Hidden Layers |
---|---|---|---|---|
MLPNN 1 | Hyperbolic tangent | Identity | Scaled conjugate gradient | 10 |
MLPNN 2 | Hyperbolic tangent | Hyperbolic tangent | Scaled conjugate gradient | 10 |
MLPNN 3 | Hyperbolic tangent | Sigmoid | Scaled conjugate gradient | 10 |
MLPNN 4 | Sigmoid | Identity | Scaled conjugate gradient | 10 |
MLPNN 5 | Sigmoid | Hyperbolic tangent | Scaled conjugate gradient | 10 |
MLPNN 6 | Sigmoid | Sigmoid | Scaled conjugate gradient | 10 |
MLPNN 7 | Hyperbolic tangent | Identity | gradient descent | 10 |
MLPNN 8 | Hyperbolic tangent | Sigmoid | gradient descent | 10 |
MLPNN 9 | Hyperbolic tangent | Hyperbolic tangent | gradient descent | 10 |
MLPNN 10 | Sigmoid | Identity | gradient descent | 10 |
MLPNN 11 | Sigmoid | Hyperbolic tangent | gradient descent | 10 |
MLPNN 12 | Sigmoid | Sigmoid | gradient descent | 10 |
RBFNN-1 | Softmax | Identity | ordinary | 10 |
RBFNN-2 | Softmax | Standardized identity | standard | 10 |
Parameters | Range | Minimum | Maximum | Mean | Standard Deviation | Variance |
---|---|---|---|---|---|---|
Waste glycerol (g/L) | 36.58 | 0.23 | 36.81 | 21.39 | 7.43 | 55.27 |
Urea (g/L) | 0.20 | 0.05 | 0.25 | 0.15 | 0.05 | 0.00 |
Endo-nutrient (mL/L) | 0.40 | 0.00 | 0.40 | 0.19 | 0.10 | 0.01 |
Na2HPO4 (g/L) | 8.00 | 0.00 | 8.00 | 3.93 | 1.89 | 3.57 |
HP (mL H2/L) | 1489.19 | 117.46 | 1606.65 | 582.98 | 493.17 | 243,213.28 |
Model | RMSE | SSE-Training | SSE-Testing | R2 |
---|---|---|---|---|
RBFNN-1 | 53.31 | 1.253 | 0.024 | 0.903 |
RBFNN-2 | 212.25 | 3.082 | 0.017 | 0.736 |
MLPNN-1 | 21.48 | 1.083 | 0.021 | 0.920 |
MLPNN-2 | 51.99 | 4.052 | 0.000 | 0.433 |
MLPNN-3 | 12.66 | 0.034 | 0.010 | 0.969 |
MLPNN-4 | 88.14 | 0.567 | 0.074 | 0.954 |
MLPNN-5 | 59.26 | 0.358 | 0.038 | 0.939 |
MLPNN-6 | 29.63 | 0.028 | 0.018 | 0.957 |
MLPNN-7 | 258.12 | 0.250 | 0.207 | 0.965 |
MLPNN-8 | 9.91 | 0.027 | 0.003 | 0.978 |
MLPNN-9 | 38.43 | 0.317 | 0.076 | 0.934 |
MLPNN-10 | 43.72 | 0.493 | 0.198 | 0.948 |
MLPNN-11 | 16.20 | 0.111 | 0.006 | 0.977 |
MLPNN-12 | 15.09 | 0.035 | 0.019 | 0.959 |
Model-Type | Objective | RMSE | R2 | Reference |
---|---|---|---|---|
MLPNN (Hyperbolic tangent as the hidden layer activation function and sigmoid as the outer layer activation function | To model the prediction of biohydrogen production from biodiesel production waste | 9.91 | 0.978 | This study |
MLP coupled with imperialist competitive algorithm | To model geothermal power generation | 2.24 | 0.997 | Khosravi and Syri [39] |
MLP coupled with levenberg marquardt training algorithm | To model hydrogen solubility in hydrocarbon fuels | 0.02 | 0.993 | Mohammadi et al. [40] |
MLPNN | To model the prediction of corrosion inhibition performances of ionic liquids | 5.47 | 0.970 | Quadri et al. [41] |
MLP- coupled with levenberg marquardt training algorithm | To model the interfacial tension of hydrogen-brine system | 0.18 | 0.999 | Ng et al. [42] |
MLP coupled with levenberg marquardt training algorithm and Sigmoid function as activation function | To model lignin extraction from oil palm biomass | 1.13 | 0.993 | Rashid et al. [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, S.S.; Ayodele, B.V.; Alhulaybi, Z.A.; Alwi, M.M.A. Data-Driven Approach to Modeling Biohydrogen Production from Biodiesel Production Waste: Effect of Activation Functions on Model Configurations. Appl. Sci. 2022, 12, 12914. https://doi.org/10.3390/app122412914
Hossain SS, Ayodele BV, Alhulaybi ZA, Alwi MMA. Data-Driven Approach to Modeling Biohydrogen Production from Biodiesel Production Waste: Effect of Activation Functions on Model Configurations. Applied Sciences. 2022; 12(24):12914. https://doi.org/10.3390/app122412914
Chicago/Turabian StyleHossain, SK Safdar, Bamidele Victor Ayodele, Zaid Abdulhamid Alhulaybi, and Muhammad Mudassir Ahmad Alwi. 2022. "Data-Driven Approach to Modeling Biohydrogen Production from Biodiesel Production Waste: Effect of Activation Functions on Model Configurations" Applied Sciences 12, no. 24: 12914. https://doi.org/10.3390/app122412914