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Featured Application: This study explored the feasibility of various multilayer perceptron con-
figurations for modeling biohydrogen production from biodiesel production waste. Based on
the best model, knowledge of how various parameters influence biohydrogen production can be
employed in designing an optimized bioreactor that could maximize production processes.

Abstract: Biodiesel production often results in the production of a significant amount of waste
glycerol. Through various technological processes, waste glycerol can be sustainably utilized for the
production of value-added products such as hydrogen. One such process used for waste glycerol
conversion is the bioprocess, whereby thermophilic microorganisms are utilized. However, due to the
complex mechanism of the bioprocess, it is uncertain how various input parameters are interrelated
with biohydrogen production. In this study, a data-driven machine-learning approach is employed
to model the prediction of biohydrogen from waste glycerol. Twelve configurations consisting of
the multilayer perceptron neural network (MLPNN) and the radial basis function neural network
(RBFNN) were investigated. The effect of using different combinations of activation functions such
as hyperbolic tangent, identity, and sigmoid on the model’s performance was investigated. Moreover,
the effect of two optimization algorithms, scaled conjugate gradient and gradient descent, on the
model performance was also investigated. The performance analysis of the models revealed that the
manner in which the activation functions are combined in the hidden and outer layers significantly
influences the performance of various models. Similarly, the model performance was also influenced
by the nature of the optimization algorithms. The MLPNN models displayed better predictive
performance compared to the RBFNN models. The RBFNN model with softmax as the hidden
layer activation function and identity as the outer layer activation function has the least predictive
performance, as indicated by an R2 of 0.403 and a RMSE of 301.55. While the MLPNN configuration
with the hyperbolic tangent as the hidden layer activation function and the sigmoid as the outer layer
activation function yielded the best performance as indicated by an R2 of 0.978 and a RMSE of 9.91.
The gradient descent optimization algorithm was observed to help improve the model’s performance.
All the input variables significantly influence the predicted biohydrogen. However, waste glycerol
has the most significant effects.

Keywords: biohydrogen; biodiesel; glycerol; multilayer perceptron neural network; radial basis
function neural network
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1. Introduction

The quest for energy transition to a carbon-neutral economy has increased strategies to
end all fossil fuel-related carbon emissions by the middle of the 21st century [1]. Reducing
energy-related carbon dioxide (CO2) emissions is a top priority in the struggle against
global warming [2]. More efforts are being made towards the realization of cutting carbon
emissions and alleviating the consequences of climate change [3–5]. Nevertheless, the
energy industry must be decarbonized in order to achieve the set target. To achieve the
carbon neutrality target, renewable energy initiatives have been reported to play a vital
role and have the potential to provide up to 90% of the required carbon reductions [1,6]. In
view of these renewable energy sources such as, solar, wind, hydro, tidal, geothermal, and
biomass, have been extensively explored and reported to have a significant contribution
towards attaining carbon neutrality in the future [7,8].

Among the various renewable energy sources, biomass has been reported to have
great potential to facilitate the actualization of the carbon neutrality target [9]. According to
a recent report, if present agricultural practices underwent the anticipated improvements,
1 billion dry tonnes of biomass may be available for energy use per year [10]. That will
amount to approximately 14 quadrillion British thermal units annually by 2030. Therefore,
biomass has been projected as an important source of sustainable energy in the future [11].
From biomass resources, liquid biofuels like bioethanol and biodiesel can be produced [12].
Besides, the by-product (or waste) from biomass processing can be sustainably utilized
to produce value-added products such as hydrogen. The primary byproduct of biodiesel
processing is glycerol, with yields of around 10% (w/w) [13]. Consequently, around 1.05
pounds of glycerol are generated for every gallon of biodiesel, which could be a huge
source of hydrogen production.

An extensive review by Schwengber et al. [14] revealed that hydrogen can be produced
from glycerol through different technological pathways such as steam reforming, partial
oxidation reforming, auto thermal reforming, aqueous phase reforming, and supercritical
water reforming. Some of these processes are energy-intensive and facilitate catalyst
deactivation by sintering and carbon deposition. Alternatively, a non-energy-intensive
process can be employed to produce hydrogen from glycerol. This process involves the use
of thermophilic microorganisms to directly convert glycerol to hydrogen. However, one
of the drawbacks of this process is the influence of media compositions on thermophilic
biohydrogen production from waste glycerol. To overcome this challenge, authors such
as Sittijunda and Reungsang [15] employed a response surface optimization strategy to
optimize the process parameters in order to maximize biohydrogen production. Although
optimum conditions were obtained for biohydrogen production, it is uncertain to what
extent each of the parameters influence biohydrogen production. This uncertainty can be
attributed to the complex bioreaction mechanisms from the conversion of glycerol to the
formation of hydrogen. This puzzle can be solved using a data-driven modeling approach
by employing machine learning algorithms such as an artificial neural network.

Different types of machine-learning algorithms have been employed to model various
processes involving hydrogen production. Hossain et al. [16] employed Gaussian process
regression to model bioethanol production from fountain grass. The findings revealed that
an optimized Gaussian process regression successfully modeled the prediction of bioethanol
production from fountain grass with an R2 of 0.993. The pH of the medium was reported
to have a significant influence on bioethanol production. In comparison to the support
vector machine regression, the Gaussian process regression was found to have a better
performance when employed to model hydrogen production from waste effluent from
bioprocesses. Machine learning algorithms are also robust in evaluating the interaction of
process parameters and their effect on the process output, as reported by Hossain et al. [17].
However, a comparative analysis of different machine learning algorithms for modeling
hydrogen production by co-gasification of biomass and coal revealed that the artificial
neural network (ANN) algorithm offers superior performance. To the best of the authors’
knowledge, the application of multilayer perceptron and radial basis function neural
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networks as well as the effect of activation functions on the network configuration for
modeling the prediction of biohydrogen from biodiesel production waste has not been
reported in the literature. Based on these premises, this study focuses on the application
of different architectures of multilayer perceptron neural networks in comparison with
selected radial basis function neural networks for the modeling of biohydrogen production
from biodiesel production waste, with a particular focus on the effect of activation functions
on model configurations.

2. Experimental and Model Configuration

The overall process flow for the modeling of biohydrogen production from waste
glycerol is depicted in Figure 1. Typically, there are four stages for the prediction of
biohydrogen production namely: data acquisition, model configuration, model evaluation,
and model deployment.

Figure 1. Overall process flow for the modeling of biohydrogen production from waste glycerol.

The data acquisition stage involved experiments on biohydrogen production. In the
experimental batch run, waste glycerol was utilized as the substrate. The experimental runs
were performed in a 100-mL serum bottle as described by Sittijunda and Reungsang [15].
The fermentation medium in the serum bottle consisted of waste glycerol, urea, Na2HPO4,
Endo-nutrient, and inoculum. According to the design, the concentrations of each medium
element were changed. The experiment was designed to investigate the effect of Urea
Endo-nutrient, Na2HPO4, and the amount of waste glycerol per liter of the medium on
biohydrogen production. Experimental data consisting of 29 runs in batch mode, was
employed for training various models used in this study.

In the configuration stage, a multilayer perceptron neural network, denoted MLPNN,
and a radial basis function neural network, denoted RBFNN (Figure 2), were employed.
The MLPNN is a form of feed-forward neural network configured to achieve optimal
performance [18]. The network configuration consists of three distinct types of layers,
which include an input layer, an output layer, and a hidden layer [19]. The signal to
be processed was brought into the system at the input layer. While the output layer
facilitated the prediction of the targeted parameters. In an MLPNN, the true computational
engine was comprised of an arbitrary number of interconnected hidden layers that were
located between the input and output layers [20]. An MLPNN functions similarly to
a feed-forward network in that data flows forward from the input layer to the output
layer [21]. The neurons of the MLPNN were often trained using a technique known as
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backpropagation learning [22]. Since MLPNNs were designed to be able to approximate
any continuous function, they may be able to tackle problems that cannot be separated
linearly. Typically, the configuration of the MLPNN consisted of three steps namely:
variable selection, partitioning of the datasets for training and testing, and architecture
specification. In step 1, the variables (both dependent and independent) were selected and
loaded into the IBM Neural Network Modeller (IBM SPSS Version 22 environment). The
datasets were subsequently partitioned in such a way that 70% was used for training and
30% for testing. The activation function for the hidden and outer layers was subsequently
selected. This was important because how successfully the network model learns the
training dataset will depend on the activation function that was used for the hidden layer.
The kind of predictions the model can produce will depend on the activation function
that is used for the output layer. Therefore, the activation function for any neural network
model must be carefully selected. The effect of combining various activation functions on
the model’s performance was investigated. The activation functions investigated included
hyperbolic, sigmoid, and identity functions. Scaled conjugate gradient and gradient descent
were employed as the optimization algorithms for training. The learning rate of the model,
which controls how much the weights are adjusted at each update, was initially set at 0.1.
The learning rate changed as the training proceeded for the MLPNN, whereas the values
remained unchanged for the RBFNN. The learning rate reduction, in epochs, was set to
10, which is the number of epochs of the training sample required to reduce the initial
learning rate to its lower boundary. A detailed description of the various configurations of
the MLPNN is summarized in Table 1.

Figure 2. The architecture of a multilayer perceptron and radial basis function neural networks.

The RBFNN, whose architecture was a form of feed-forward neural network that
was robust in addressing issues with function [23], universal approximation and quicker
learning pace of RBFNN set them apart from other neural networks. The RBFNN consisted
of the input layer, the hidden layer, and the output layer [24]. Similar to the MLPNN,
the RBFNN configuration involved the selection of a variable, the partitioning of the
dataset, and the setting of the architecture. The dataset was split into two proportions for:
training (70%) and testing (30%). During the training, once the computed error reaches
the appropriate values or the required number of training iterations has been reached,
the RBFNN model’s training will be stopped. Two configurations of the RBFNN, which
utilized the ordinary radial basis activation function and the standard radial basis activation
function, were employed in this study. Equation (1) was used to determine the output of
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the ith activation function in the hidden layer of the network as a function of the distance
between the input vectors and the center [25].

∅i(‖x− ci‖) = exp

(
−‖x− ci‖2

2σ2
j

)
(1)

where the symbol ‖ ‖ denotes the Euclidean norms, ci denotes the center of the hidden
neurons, σ denotes the width of the hidden neuron [26].

Table 1. Summary of the various MLPNN and RBFNN configurations used.

Model The Activation Function
in the Hidden Layer

The Activation Function
in the Outer Layer

Optimization Algorithm
for Training

Number of Units in
the Hidden Layers

MLPNN 1 Hyperbolic tangent Identity Scaled conjugate gradient 10
MLPNN 2 Hyperbolic tangent Hyperbolic tangent Scaled conjugate gradient 10
MLPNN 3 Hyperbolic tangent Sigmoid Scaled conjugate gradient 10
MLPNN 4 Sigmoid Identity Scaled conjugate gradient 10
MLPNN 5 Sigmoid Hyperbolic tangent Scaled conjugate gradient 10
MLPNN 6 Sigmoid Sigmoid Scaled conjugate gradient 10
MLPNN 7 Hyperbolic tangent Identity gradient descent 10
MLPNN 8 Hyperbolic tangent Sigmoid gradient descent 10
MLPNN 9 Hyperbolic tangent Hyperbolic tangent gradient descent 10
MLPNN 10 Sigmoid Identity gradient descent 10
MLPNN 11 Sigmoid Hyperbolic tangent gradient descent 10
MLPNN 12 Sigmoid Sigmoid gradient descent 10
RBFNN-1 Softmax Identity ordinary 10
RBFNN-2 Softmax Standardized identity standard 10

The RBFNN was often trained in using two steps. The first step entailed the determi-
nation of centers and widths using a pre-defined algorithm. The second step involved the
determination of interconnected weights between the hidden layer and the output layer by
minimizing the root mean square over the entire data set.

The coefficient of determination (R2), root mean squared errors (RMSE), and the sum of
squares error (SSE) were used to model performance. The level of importance (ϑik) analysis
using the Garson modified algorithm (Equation (2) was performed on the best model to
determine to what extent the input variables influence the predicted model output [27].

ϑik =
∑L

j=1

(
wijvij

∑N
r=1 wrj

)
∑N

i=1

(
∑l

j=1

(
wijvij

∑N
r=1 wrj

)) (2)

where i and k are the input and output vectors, respectively, the sum of the weights linking
the input layer (i) and the j neuron can be represented as ∑N

r=1 wrj, the total number of
vectors input into the model is represented as N, and the total number of neurons in the
hidden layer is denoted as L. The weights that represent the connection between j neuron
and the k input are denoted as wvrj.

3. Results and Discussion
3.1. Parametric Analysis and Descriptive Statistics of the Data

The parametric analysis showing the relationship between input variables and hy-
drogen production is depicted by the contour plots in Figure 3. The contour plot analysis
helped to determine what range of values of the input variables significantly influence
the biohydrogen production based on the available experimental data. It was successfully
employed in the analysis of fluid catalytic cracking catalysts, as reported by Ebrahimi and
Ghazvini [28]. Figure 3a shows the effect of an interaction between waste glycerol and
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urea on biohydrogen production. The interaction effect of waste glycerol and urea on
biohydrogen production can be seen to vary. Using a high concentration of urea inhibited
biohydrogen production, as can be seen from the green color zone in Figure 3a, which is
consistent with the report by Tratzi et al. 2022 [29]. However, at a concentration of urea in
the range of 0.25–0.75 g/L and a waste glycerol concentration in the range of 5–20 g/L, a
high volume of biohydrogen was produced. Also, in Figure 3b, high biohydrogen produc-
tion was favored at a urea concentration range of 1.25–0.25 g/L using endo-nutrients up to
0.35 g/L. Figure 3c revealed that using Na2HPO4 in the range of 3–6 g/L while maintaining
the concentration of urea between 0.1–0.175 can facilitate high biohydrogen production
from waste glycerol. Figure 3d shows that the interaction between waste glycerol and
Na2HPO4 has the most significant effects on biohydrogen production. It can be seen that
high hydrogen production (up to 20,000 mL H2/L) was facilitated using waste glycerol in
the range of 5–10 g/L and Na2HPO4 in the range of 6–8 g/L.

Figure 3. Contour plots showing the interaction between (a) urea and waste glycerol (b) Endo-nutrient
and urea (c) Na2HPO4 and urea (d) Na2HPO4 and waste glycerol.

The descriptive statistical analysis of the dataset used for training the model is summa-
rized in Table 2. The analysis revealed that waste glycerol is in the range of 0.23–36.81 g/L,
with a mean value estimated at 21.39 g/L. The standard deviation and variance of waste
glycerol datasets were calculated as 7.43 g/L and 55.27 g/L, respectively. The amount of
urea used for the experiment varied in the range of 0.05 to 0.25 g/L, with a mean value of
0.15 g/L. The standard deviation and the variance were obtained as 0.05 g/L and 0 g/L,
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respectively. The Endo-nutrient amounts used for the experiment also varied from 0 to
0.4 mL/L, with the mean value calculated as 0.15. A standard deviation of 0.1 was obtained
for the datasets. For Na2HPO4, the amount varied from 0 to 8 g/L with a mean of 3.93 g/L.
The standard deviation and variance were estimated at 1.89 g/L and 3.57 g/L, respectively.
The biohydrogen production was in the range of 117.46 to 1606.65 g/L, with the mean
calculated as 582.98 g/L. The standard deviation and variance were calculated as 493.17 g/L
and 243213.28 g/L, respectively.

Table 2. Descriptive statistics for input and targeted variables.

Parameters Range Minimum Maximum Mean Standard Deviation Variance

Waste glycerol (g/L) 36.58 0.23 36.81 21.39 7.43 55.27
Urea (g/L) 0.20 0.05 0.25 0.15 0.05 0.00

Endo-nutrient (mL/L) 0.40 0.00 0.40 0.19 0.10 0.01
Na2HPO4 (g/L) 8.00 0.00 8.00 3.93 1.89 3.57
HP (mL H2/L) 1489.19 117.46 1606.65 582.98 493.17 243,213.28

3.2. Model Performance

The performance of the RBFNN and MLPNN as a function of the RMSE, SEE, and
R2 is summarized in Table 3. The RBFNN displayed great potential in predicting the
biohydrogen production from waste glycerol. As shown in Figure 4a, the actual values
depicted as “1” are consistent with the predicted values by RBFNN-1 depicted as “2”.
On the contrary, poorer performance in the prediction of the biohydrogen from waste
glycerol using the RBFNN-2 is observed in Figure 4b. Moreover, the superior performance
of the RBFNN-1 model over the RBFNN-2 model can be further ascertained from the R2

and RMSE values of 0.903 and 53.31, respectively, obtained for the RBFNN-1 model. This
implied that RBFNN-1 had a robust prediction with fewer errors compared to RBFNN-2,
which had R2 and RMSE values of 0.419 and 301.55, respectively. A better performance
of RBFNN-1 compared with RBFNN-2 could be attributed to the use of a standardized
identity activation function compared to the non-standardized activation function used
in RBFNN-2. The use of a standardized identity activation function has been reported to
improve the performance of RBFNN [30]. The use of standardized identity as an activation
function in the outer layer helps to prevent diminishing gradient problems and improve
the computation performance of the RBFNN-1 model [31].

Table 3. Summary of performance analysis for the models.

Model RMSE SSE-Training SSE-Testing R2

RBFNN-1 53.31 1.253 0.024 0.903
RBFNN-2 212.25 3.082 0.017 0.736
MLPNN-1 21.48 1.083 0.021 0.920
MLPNN-2 51.99 4.052 0.000 0.433
MLPNN-3 12.66 0.034 0.010 0.969
MLPNN-4 88.14 0.567 0.074 0.954
MLPNN-5 59.26 0.358 0.038 0.939
MLPNN-6 29.63 0.028 0.018 0.957
MLPNN-7 258.12 0.250 0.207 0.965
MLPNN-8 9.91 0.027 0.003 0.978
MLPNN-9 38.43 0.317 0.076 0.934
MLPNN-10 43.72 0.493 0.198 0.948
MLPNN-11 16.20 0.111 0.006 0.977
MLPNN-12 15.09 0.035 0.019 0.959
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Figure 4. Comparison between the actual and predicted biohydrogen using (a) RBFNN-1 (b)
RBFNN-2.

The performance of the MLPNNs with various configurations based on the hidden
and outer layer activation functions optimized using a scaled conjugate gradient algorithm
is depicted in Figure 5. It can be seen that all the MLPNN configurations optimized
using the scaled conjugate gradient algorithms were robust in their predictive modeling of
the interconnectivity between the input variables and the targeted output (biohydrogen
production), with the exception of MLPNN-2. The actual volume of biohydrogen produced
per liter of waste glycerol in Figure 5a,c–e was consistent with the values predicted by
the MLPNN-1, MLPNN-3, MLPNN-4, and MLPNN-5, respectively. This implied that the
combination of a hyperbolic tangent as the activation function for the hidden layer and
identity as the activation function for the outer layer resulted in a robust performance in
predicting biohydrogen production. This can be further ascertained from a high R2 value
of 0.920 and a low RMSE value of 21.48. Minimal errors were obtained from training and
testing the MLPNN-1 with the experimental data. However, improved performance in
the predictability of the model was obtained using MLPNN-3, MLPNN-4, and MLPNN-5,
as indicated by the R2 values of 0.969, 0.954, and 0.939, respectively, and low RMSE
values. This implied that the nature of the activation function used in the hidden and outer
layers significantly influenced the model’s performance [32]. Using the scaled conjugate
gradient optimization algorithm, the MLPNN-3 with hyperbolic tangent as the hidden
layer activation function and sigmoid as the outer layer activation function had the best
predictive performance, as indicated by an R2 of 0.969. It is obvious that using hyperbolic
tangent as an activation function at the hidden and outer layers did not result in good
predictability by the model, as indicated by an R2 of 0.433.

The performance of the MLPNN models with various configurations optimized using
gradient descent algorithms is depicted in Figure 6. It can be seen that all the model
configurations displayed robust performance in modeling the prediction of biohydrogen
production from waste glycerol. Compared to MLPNN optimization using the scaled
conjugate gradient algorithm, better performances were obtained for MLPNN by using
the gradient descent optimization algorithm. The gradient descent optimization algorithm
had the advantage of robust computational efficiency, whereby a stable error gradient
was produced, resulting in stable convergence [33,34]. Moreover, it can be seen that the
use of various configurations of activation functions in the hidden and outer layers of
the MLPNN optimized using the gradient descent algorithm significantly influenced the
model’s predictability. Although all the models displayed robust performance based on
their high R2 value, which was greater than 0.940, MLPNN-7 with hyperbolic tangent as
the hidden layer activation function and Sigmoid as the outer layer activation function
displayed the best performance, as indicated by an R2 of 0.978 and a RMSE of 9.91. This
performance was consistent with the best configuration using the scaled gradient descent
optimization algorithm. For all the models, the actual values of the volume of biohydrogen
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produced per liter of waste glycerol were in close proximity with the predicted values, as
shown in Figure 6a–e. The training and testing of the experimental data in the models
resulted in low errors, as indicated by the low SSE values.

Figure 5. Comparison between the actual and predicted biohydrogen using (a) MLPNN-1 (b)
MLPNN-2 (c) MLPNN-3 (d) MLPNN-4 (e) MLPNN-5 (f) MLPNN-6 with a scaled conjugate gradient
optimization algorithm.
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Figure 6. Comparison between actual and predicted biohydrogen using (a) MLPNN-7 (b)
MLPNN-8 (c) MLPNN-9 (d) MLPNN-10 (e) MLPNN-11 (f) MLPNN-12 with a gradient descent
optimization algorithm.

The level of importance of the analysis of how the input variables influence the pre-
dicted values is depicted in Figure 7. It can be seen that all the input variables, namely waste
glycerol, Urea, Endo-nutrient, and Na2PO4, had varying levels of influence on the predicted
biohydrogen production. However, waste glycerol with the highest level of importance
value of 0.542 had the most significant influence on the predicted biohydrogen production.
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Figure 7. Analysis of the relative importance of input variables on predicted biohydrogen production.

3.3. Comparison of the Best Model with Literature and Implications of the Study

The performance analysis of the various models used in this study, as summarized in
Table 2, revealed that MLPNN configured using the hyperbolic tangent in the hidden layer
and sigmoid at the outer layer with a gradient descent optimization algorithm producing
the best prediction of biohydrogen from the biodiesel waste. This is evidenced by the
highest R2 value of 0.978 and the lowest RMSE value of 9.91 mL H2/L of biodiesel waste.
The robust performance of the model in modeling the prediction of biohydrogen production
could be attributed to the unique characteristics of the hyperbolic tangent as well as the
activation at the hidden layer [35]. The hyperbolic activation function enables rapid
network convergence at the hidden layer, thereby complementing the sigmoid activation
function and facilitating a robust prediction [36]. The sigma activation function’s primary
goal is to keep the predicted or output value inside a certain bound, which contributes
to the model’s effectiveness and precision [37]. Besides, it is generally accepted that the
best method for optimizing neural networks and other machine-learning algorithms is
using gradient descent. Gradient descent as an iterative optimization algorithm has the
advantage of reducing the cost function to obtain a model that can accurately predict a
targetted output [38]. The difference between the model’s anticipated output and the actual
output was measured by the cost function (C) or the loss function.

The performance of the best model in this study is comparable with similar MLP-
neural network configurations that have been successfully employed to model geothermal
power generation [39], hydrogen solubility in hydrocarbon fuels [40], prediction of corro-
sion inhibition performances of ionic liquids [41], the interfacial tension of the hydrogen-
brine system [42], and lignin extraction from oil palm biomass [43] (Table 4). Various models
have displayed robust performance in modeling the target model output, as indicated by
high R2 and low RMSE values. The slight variation in the performance indicator of the best
model in this study and those reported in the literature can be attributed to the peculiarity
of the datasets, the differences in training algorithms, and the nature of activation functions.

Since the MLPNN can recognize all conceivable interactions between predictor vari-
ables, numerous training methods, and the capacity to implicitly detect complicated non-
linear connections between dependent and independent variables, model algorithms can
be employed to determine the most important parameters that influence biohydrogen
production from biodiesel waste such as glycerol, considering all possible input parameters.
Besides, using the existing data to model the prediction of biohydrogen could help optimize
the process, thereby preventing material loss, enhancing process safety, and eventually
saving costs. However, the study is limited since all the available hyperparameters in the
model configurations have not been fully exhausted. Hence, future research could consider
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the effect of various layers and perhaps varying the number of artificial neurons in the
hidden layer as well as employing the possibility of more training algorithms.

Table 4. Comparison of the best model with the literature.

Model-Type Objective RMSE R2 Reference

MLPNN (Hyperbolic tangent as the hidden
layer activation function and sigmoid as the

outer layer activation function

To model the prediction of
biohydrogen production from

biodiesel production waste
9.91 0.978 This study

MLP coupled with imperialist competitive
algorithm

To model geothermal power
generation 2.24 0.997 Khosravi and Syri

[39]

MLP coupled with levenberg marquardt
training algorithm

To model hydrogen solubility in
hydrocarbon fuels 0.02 0.993 Mohammadi et al.

[40]

MLPNN
To model the prediction of

corrosion inhibition
performances of ionic liquids

5.47 0.970 Quadri et al. [41]

MLP- coupled with levenberg marquardt
training algorithm

To model the interfacial tension
of hydrogen-brine system 0.18 0.999 Ng et al. [42]

MLP coupled with levenberg marquardt
training algorithm and Sigmoid function as

activation function

To model lignin extraction from
oil palm biomass 1.13 0.993 Rashid et al. [43]

4. Conclusions

In this study, a modeling approach was employed to understand the role of process
variables in biohydrogen production from biodiesel production waste. Twelve models,
mainly MLPNN and RBFNN, were configured by varying the activation functions in the
hidden and outer layers under two different types of optimization algorithms. Both the
MLPNN and RBFNN performances were significantly influenced by the type of activation
function used in the hidden and outer layers. The use of softmax and identity activation
functions in the hidden and outer layers of the RBFNN model did not show impressive
performance. Whereas an improved performance was observed using exponential and
standardized identities at the hidden and outer layers of the RBFNN model, respectively.
The MLPNN models displayed superior predictive performance compared to the RBFNN
model. The MLPNN model with hyperbolic tangent and sigmoid activation functions at
the hidden and outer layers incorporated with the gradient descent optimization algorithm
displayed the best performance, which was reflected in the high R2 value of 0.978.
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