Life Cycle Assessment of Laser-Induced Maize Production: Adoption of Sustainable Agriculture Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope of the Study
2.2. Life Cycle Inventory and Analysis
2.3. Life Cycle Impact Assessment
3. Results and Discussion
3.1. LCA of Maize Production Induced by Laser versus Conventional Maize Production
3.2. Assessment of Midpoint Ecotoxicity Impacts of Laser-Induced Maize Production Using the CML 2000 and ReCiPe 2016 Methods
3.3. Endpoint Damage Assessment of Laser-Induced Maize Production Using the IMPACT 2002+ and ReCiPe 2016 Methods
3.4. Comparison with Previous LCA Studies on Maize Production
4. Challenges to Sustainable Agriculture Practices in Iraq
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rasool, A.; Mir, M.I.; Zulfajri, M.; Hanafiah, M.M.; Unnisa, S.A.; Mahboob, M. Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere. Microb. Pathog. 2021, 150, 104734. [Google Scholar] [CrossRef]
- Al-Raad, A.A.; Hanafiah, M.M.; Naje, A.S.; Ajeel, M.A. Optimized Parameters of the Electrocoagulation Process Using a Novel Reactor with Rotating Anode for Saline Water Treatment. Environ. Pollut. 2020, 265, 115049. [Google Scholar] [CrossRef] [PubMed]
- Palani, G.; Arputhalatha, A.; Kannan, K.; Lakkaboyana, S.K.; Hanafiah, M.M.; Kumar, V.; Marella, R.K. Current Trends in The Application of Nanomaterials for The Removal of Pollutants from Industrial Wastewater Treatment—A Review. Molecules 2021, 26, 2799. [Google Scholar] [CrossRef] [PubMed]
- Garakishi, H.K. Evaluation of Wheat Varieties in Response to Low and Moderate Input Farming Systems. Res. Crops 2020, 21, 26–30. [Google Scholar]
- Tayefeh, M.; Sadeghi, S.M.; Noorhosseini, S.A.; Bacenetti, J.; Damalas, C.A. Environmental Impact of Rice Production Based on Nitrogen Fertilizer Use. Environ. Sci. Pollut. Res. 2018, 25, 15885–15895. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Ghazali, N.F.; Harun, S.N.; Abdulaali, H.S.; AbdulHasan, M.J.; Kamarudin, M.K.A. Assessing Water Scarcity in Malaysia: A Case Study of Rice Production. DWT 2019, 149, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, S.M.; Noorhosseini, S.A.; Damalas, C.A. Environmental Sustainability of Corn (Zea Mays L.) Production on the Basis of Nitrogen Fertilizer Application: The Case of Lahijan, Iran. Renew. Sustain. Energy Rev. 2018, 95, 48–55. [Google Scholar] [CrossRef]
- Hasan, M.; Hanafiah, M.M.; Aeyad Taha, Z.; AlHilfy, I.H.H.; Said, M.N.M. Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed. Appl. Sci. 2020, 10, 1189. [Google Scholar] [CrossRef] [Green Version]
- AlSalhi, M.S.; Tashish, W.; Al-Osaif, S.S.; Atif, M. Effects of He–Ne Laser and Argon Laser Irradiation on Growth, Germination, and Physico-Biochemical Characteristics of Wheat Seeds (Triticumaestivum L.). Laser Phys. 2019, 29, 015602. [Google Scholar] [CrossRef]
- Hasan, M.; Hanafiah, M.M.; Taha, Z.A.; Alhilfy, I.H.H. Effect of Low-Intensity Laser Irradiation on Field Performance of Maize (Zea Mays L.) Emergence, Phenological and Seed Quality Characteristics. Appl. Ecol. Env. Res. 2020, 18, 6009–6023. [Google Scholar] [CrossRef]
- Abdani Nasiri, A.; Mortazaeinezhad, F.; Taheri, R. Seed Germination of Medicinal Sage Is Affected by Gibberellic Acid, Magnetic Field and Laser Irradiation. Electromagn. Biol. Med. 2018, 37, 50–56. [Google Scholar] [CrossRef]
- Abou-Dahab, A.-D.M.; Mohammed, T.A.; Heikal, A.A.; Taha, L.S.; Gabr, A.M.M.; Metwally, S.A.; Ali, A.I.R. In Vitro Laser Radiation Induces Mutation and Growth in Eustoma Grandiflorum Plant. Bull. Natl. Res. Cent. 2019, 43, 3. [Google Scholar] [CrossRef] [Green Version]
- Henryson, K.; Hansson, P.-A.; Kätterer, T.; Tidåker, P.; Sundberg, C. Environmental Performance of Crop Cultivation at Different Sites and Nitrogen Rates in Sweden. Nutr. Cycl. Agroecosyst. 2019, 114, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Land Use/Land Cover Change Detection and Urban Sprawl in the Peri-Urban Area of Greater Cairo since the Egyptian Revolution of 2011. J. Land Use Sci. 2020, 15, 592–606. [Google Scholar] [CrossRef]
- Harun, S.N.; Hanafiah, M.M.; Aziz, N.I.H. An LCA-Based Environmental Performance of Rice Production for Developing a Sustainable Agri-Food System in Malaysia. Environ. Manag. 2021, 67, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.I.H.A.; Hanafiah, M.M. Life Cycle Analysis of Biogas Production from Anaerobic Digestion of Palm Oil Mill Effluent. Renew. Energy 2020, 145, 847–857. [Google Scholar] [CrossRef]
- Ismail, H.; Hanafiah, M.M. A Review of Sustainable E-Waste Generation and Management: Present and Future Perspectives. J. Environ. Manag. 2020, 264, 110495. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Leuven, R.S.; Sommerwerk, N.; Tockner, K.; Huijbregts, M.A. Including the Introduction of Exotic Species in Life Cycle Impact Assessment: The Case of Inland Shipping. Environ. Sci. Technol. 2013, 47, 13934–13940. [Google Scholar] [CrossRef]
- Canaj, K.; Mehmeti, A. Analyzing the Water-Energy-Environment Nexus of Irrigated Wheat and Maize Production in Albania. Energy Nexus 2022, 7, 100100. [Google Scholar] [CrossRef]
- Xiong, L.; Shah, F.; Wu, W. Environmental and Socio-Economic Performance of Intensive Farming Systems with Varying Agricultural Resource for Maize Production. Sci. Total Environ. 2022, 850, 158030. [Google Scholar] [CrossRef]
- Montemayor, E.; Bonmatí, A.; Torrellas, M.; Camps, F.; Ortiz, C.; Domingo, F.; Riau, V.; Antón, A. Environmental Accounting of Closed-Loop Maize Production Scenarios: Manure as Fertilizer and Inclusion of Catch Crops. Resour. Conserv. Recycl. 2019, 146, 395–404. [Google Scholar] [CrossRef]
- Król-Badziak, A.; Pishgar-Komleh, S.H.; Rozakis, S.; Księżak, J. Environmental and Socio-Economic Performance of Different Tillage Systems in Maize Grain Production: Application of Life Cycle Assessment and Multi-Criteria Decision Making. J. Clean. Prod. 2021, 278, 123792. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, W.; Wang, X.; Zhang, L.; Zhang, W.; Liu, D.; Chen, X. Agronomic, Environmental, and Ecosystem Economic Benefits of Controlled-Release Nitrogen Fertilizers for Maize Production in Southwest China. J. Clean. Prod. 2021, 312, 127611. [Google Scholar] [CrossRef]
- Ala-Kokko, K.; Lanier Nalley, L.; Shew, A.M.; Tack, J.B.; Chaminuka, P.; Matlock, M.D.; D’Haese, M. Economic and Ecosystem Impacts of GM Maize in South Africa. Glob. Food Secur. 2021, 29, 100544. [Google Scholar] [CrossRef]
- Gao, N.; Wei, Y.; Zhang, W.; Yang, B.; Shen, Y.; Yue, S.; Li, S. Carbon Footprint, Yield and Economic Performance Assessment of Different Mulching Strategies in a Semi-Arid Spring Maize System. Sci. Total Environ. 2022, 826, 154021. [Google Scholar] [CrossRef] [PubMed]
- ISO 14040:2006/Amd 1:2020. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/61/76121.html (accessed on 2 August 2022).
- Publications—IPCC-TFI. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 11 November 2022).
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. LCA 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.; Struijs, J.; Zelm, R. ReCiPe 2008. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. 2009, Volume 1, pp. 1–126. Available online: https://www.researchgate.net/publication/302559709_ReCiPE_2008_A_life_cycle_impact_assessment_method_which_comprises_harmonised_category_indicators_at_the_midpoint_and_the_endpoint_level (accessed on 13 October 2022).
- Kannan, K.; Radhika, D.; Gnanasangeetha, D.; Lakkaboyana, S.K.; Sadasivuni, K.K.; Gurushankar, K.; Hanafiah, M.M. Photocatalytic and Antimicrobial Properties of Microwave Synthesized Mixed Metal Oxide Nanocomposite. Inorg. Chem. Commun. 2021, 125, 108429. [Google Scholar] [CrossRef]
- Qi, D.; Wu, Q.; Zhu, J. Nitrogen and Phosphorus Losses from Paddy Fields and the Yield of Rice with Different Water and Nitrogen Management Practices. Sci. Rep. 2020, 10, 9734. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Huppes, G.; Zhao, X.; Ren, N. Using Site-Specific Life Cycle Assessment Methodology to Evaluate Chinese Wastewater Treatment Scenarios: A Comparative Study of Site-Generic and Site-Specific Methods. J. Clean. Prod. 2017, 144, 1–7. [Google Scholar] [CrossRef]
- Pradel, M.; Aissani, L. Environmental Impacts of Phosphorus Recovery from a “Product” Life Cycle Assessment Perspective: Allocating Burdens of Wastewater Treatment in the Production of Sludge-Based Phosphate Fertilizers. Sci. Total Environ. 2019, 656, 55–69. [Google Scholar] [CrossRef]
- Awad, H.; Gar Alalm, M.; El-Etriby, H.K. Environmental and Cost Life Cycle Assessment of Different Alternatives for Improvement of Wastewater Treatment Plants in Developing Countries. Sci. Total Environ. 2019, 660, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Cammarano, D.; Valdivia, R.O.; Beletse, Y.G.; Durand, W.; Crespo, O.; Tesfuhuney, W.A.; Jones, M.R.; Walker, S.; Mpuisang, T.N.; Nhemachena, C.; et al. Integrated Assessment of Climate Change Impacts on Crop Productivity and Income of Commercial Maize Farms in Northeast South Africa. Food Secur. 2020, 12, 659–678. [Google Scholar] [CrossRef]
- Huijbregts, M. A Critical View on Scientific Consensus Building in Life Cycle Impact Assessment. Int. J. Life Cycle Assess 2014, 19, 477–479. [Google Scholar] [CrossRef] [Green Version]
- Bessou, C.; Basset-Mens, C.; Tran, T.; Benoist, A. LCA Applied to Perennial Cropping Systems: A Review Focused on the Farm Stage. Int. J. Life Cycle Assess. 2013, 18, 340–361. [Google Scholar] [CrossRef] [Green Version]
- EMEP/EEA (European Environment Agency). Air Pollutant Emission Inventory Guidebook. 2013. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (accessed on 11 November 2022).
- Noya, I.; González-García, S.; Bacenetti, J.; Fiala, M.; Moreira, M.T. Environmental Impacts of the Cultivation-Phase Associated with Agricultural Crops for Feed Production. J. Clean. Prod. 2018, 172, 3721–3733. [Google Scholar] [CrossRef]
- Saswattecha, K.; Kroeze, C.; Jawjit, W.; Hein, L. Options to Reduce Environmental Impacts of Palm Oil Production in Thailand. J. Clean. Prod. 2016, 137, 370–393. [Google Scholar] [CrossRef]
- Wang, X.; Zou, C.; Zhang, Y.; Shi, X.; Liu, J.; Fan, S.; Liu, Y.; Du, Y.; Zhao, Q.; Tan, Y.; et al. Environmental Impacts of Pepper (Capsicum Annuum L) Production Affected by Nutrient Management: A Case Study in Southwest China. J. Clean. Prod. 2018, 171, 934–943. [Google Scholar] [CrossRef]
- Fantin, V.; Righi, S.; Rondini, I.; Masoni, P. Environmental Assessment of Wheat and Maize Production in an Italian Farmers’ Cooperative. J. Clean. Prod. 2017, 140, 631–643. [Google Scholar] [CrossRef]
- Supasri, T.; Itsubo, N.; Gheewala, S.H.; Sampattagul, S. Life Cycle Assessment of Maize Cultivation and Biomass Utilization in Northern Thailand. Sci. Rep. 2020, 10, 3516. [Google Scholar] [CrossRef] [Green Version]
- Ghasempour, A.; Ahmadi, E. Evaluation of Environmental Effects in Producing Three Main Crops (Corn, Wheat and Soybean) Using Life Cycle Assessment. Agric. Eng. Int. 2018, 20, 126–137. [Google Scholar]
- FAO (Ed.) The state of food security and nutrition in the world. In Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018; ISBN 978-92-5-130571-3. [Google Scholar]
- Chaloob, I.Z.; Ramli, R.; Nawawi, M.K.M. Measuring Economic and Environmental Efficiency for Agricultural Zones in Iraq Using Data Envelopment Analysis. Int. J. Inf. Decis. Sci. 2018, 10, 235–248. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-133394-5. [Google Scholar]
- Telleria, R.; Zowain, A. Policy and Institutional Options for Salinity Management in Iraq’s Agricultural Sector—A Swot Analysis. In ICARDA Working Paper; ICARDA: Beirut, Lebanon, 2013. [Google Scholar]
- Gibson, G.R.; Campbell, J.B.; Randolph, H. Three Decades of War and Food Insecurity in Iraq. Photogramm. Eng. Remote Sens. 2012, 78, 885–895. [Google Scholar] [CrossRef]
Input | Process | Output | ||||
---|---|---|---|---|---|---|
Process | Amount | Emissions (kg) | Laser | Control | ||
Laser | Control | |||||
Electricity (kWh) | 0.002 | / | Laser Irradiation | CO2 | 1.22 × 10−4 | / |
CH4 | 5.54 × 10−9 | / | ||||
N2O | 1.76 × 10−8 | / | ||||
Maize seeds (kg) | 2.42 | 2.71 | Field Preparation | CO2 | 1.80 × 101 | 2.01 × 101 |
Fuel (L) | N2O | 1.19 × 10−5 | 1.33 × 10−5 | |||
Harrowing | 1.71 | 1.91 | CH4 | 1.14 × 10−5 | 1.27 × 10−5 | |
Plowing | 2.49 | 2.78 | NOx | 1.46 × 10−2 | 1.63 × 10−2 | |
Spring spike tooth harrow | 2.38 | 2.66 | SO2 | 2.63 × 10−2 | 2.94 × 10−2 | |
Irrigation (m3) | 19.68 | 17.58 | Cultivation Process | NH3-N | 1.30 × 101 | 1.45 × 101 |
Fertilizer (kg) | N2O | 2.78 | 3.11 | |||
NOx | 1.13 × 10−1 | 1.26 × 10−1 | ||||
DAP N:P 46:18 | 74.24 | 83.07 | CO2 | 2.18 × 10−1 | 2.44 × 10−1 | |
Urea | 62.25 | 69.65 | PO4 | 6.71 × 10−3 | 7.51 × 10−3 | |
Pesticides/Diazinon | 0.85 | 0.95 | SO2 | 1.57 × 10−2 | 1.76 × 10−2 | |
Fuel (L) | CH4 | 2.40 | 2.68 | |||
Cd | 1.34 × 10−3 | 1.50 × 10−3 | ||||
Sowing | 1.85 | 2.07 | Cu | 4.12 × 10−3 | 4.61 × 10−3 | |
Herbicide application | 0.14 | 0.16 | Zn | 3.50 × 10−2 | 3.91 × 10−2 | |
Fertilizer application | 0.09 | 0.11 | Pb | 6.14 × 10−3 | 6.87 × 10−3 | |
Electricity/irrigation | 12.85 | 14.37 | Ni | 3.64 × 10−3 | 4.07 × 10−3 | |
Cr | 1.80 × 10−2 | 2.02 × 10−2 | ||||
Harvest machine/fuel | 2.71 | 2.71 | Harvesting | CO2 | 7.40 | 7.40 |
N2O | 4.91 × 10−6 | 4.91 × 10−6 | ||||
CH4 | 4.69 × 10−6 | 4.69 × 10−6 | ||||
NOx | 6.02 × 10−3 | 6.02 × 10−3 | ||||
SO2 | 1.08 × 10−2 | 1.08 × 10−2 | ||||
Maize | 1.00 | 1.00 |
Impact Category | Unit | Total | |
---|---|---|---|
Non-Irradiated | Irradiated | ||
Midpoint | |||
Global warming | kg CO2 eq | 2243.78 | 2006.82 |
Stratospheric ozone depletion | kg CFC11 eq | 0.034 | 0.031 |
Ionizing radiation | kBq Co-60 eq | 14.28 | 12.91 |
Ozone formation, Human health | kg NOx eq | 1.314 | 1.17 |
Fine particulate matter formation | kg PM2.5 eq | 5.39 | 4.82 |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 1.42 | 1.28 |
Terrestrial acidification | kg SO2 eq | 31.66 | 28.31 |
Freshwater eutrophication | kg P eq | 0.11 | 0.10 |
Marine eutrophication | kg N eq | 0.03 | 0.029 |
Terrestrial ecotoxicity | kg 1,4-DCB | 2401.10 | 2149.70 |
Freshwater ecotoxicity | kg 1,4-DCB | 12.94 | 11.63 |
Marine ecotoxicity | kg 1,4-DCB | 19.23 | 17.27 |
Human carcinogenic toxicity | kg 1,4-DCB | 13.25 | 11.96 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 2069.86 | 1851.40 |
Land use | m2 a crop eq | 784.08 | 699.31 |
Mineral resource scarcity | kg Cu eq | 7.05 | 6.31 |
Fossil resource scarcity | kg oil eq | 179.81 | 161.51 |
Water consumption | m3 | 39.48 | 39.26 |
Endpoint | |||
Human health | DALY | 6.10 × 10−3 | 5.46 × 10−3 |
Ecosystem | PDF species.yr | 2.07 × 10−5 | 1.86 × 10−5 |
Resources | USD2013 | 67.64 | 60.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanafiah, M.M.; Hasan, M.; K. Razman, K.; Harun, S.N.; Sakawi, Z. Life Cycle Assessment of Laser-Induced Maize Production: Adoption of Sustainable Agriculture Practices. Appl. Sci. 2022, 12, 11779. https://doi.org/10.3390/app122211779
Hanafiah MM, Hasan M, K. Razman K, Harun SN, Sakawi Z. Life Cycle Assessment of Laser-Induced Maize Production: Adoption of Sustainable Agriculture Practices. Applied Sciences. 2022; 12(22):11779. https://doi.org/10.3390/app122211779
Chicago/Turabian StyleHanafiah, Marlia M., Mohammed Hasan, Khalisah K. Razman, Siti N. Harun, and Zaini Sakawi. 2022. "Life Cycle Assessment of Laser-Induced Maize Production: Adoption of Sustainable Agriculture Practices" Applied Sciences 12, no. 22: 11779. https://doi.org/10.3390/app122211779
APA StyleHanafiah, M. M., Hasan, M., K. Razman, K., Harun, S. N., & Sakawi, Z. (2022). Life Cycle Assessment of Laser-Induced Maize Production: Adoption of Sustainable Agriculture Practices. Applied Sciences, 12(22), 11779. https://doi.org/10.3390/app122211779