Research on Frost Heaving Distribution of Seepage Stratum in Tunnel Construction Using Horizontal Freezing Technique
Abstract
:1. Introduction
2. Hydro–Thermal Coupling Mathematical Model
2.1. Basic Parameters
2.2. Coupling of Temperature Field to Seepage Field
3. Thermo–Mechanical Coupling Mathematical Model
3.1. Freezing Temperature Field
3.2. Coupling of Stress Field to Temperature Field
4. Finite Element Calculation Model
4.1. Calculation Model
4.2. Model Parameters
4.3. Initial Boundary Conditions
4.3.1. Boundary Conditions and Initial Conditions of Seepage Field
4.3.2. Boundary Conditions and Initial Conditions of Temperature Field
5. Discussion
5.1. Effect of Groundwater Seepage on Freezing Temperature Field
5.2. Effect of Groundwater Seepage on Frost Heaving Displacement of Ground
5.3. Effect of Tunnel Buried Depth on Frost Heaving Displacement of Ground
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, Y.X.; Lu, Z.; Yao, H. Numerical Analysis of Thermo-Hydro-Mechanical Coupling of Diversion Tunnels in a Seasonally Frozen Region. J. Cold Reg. Eng. 2020, 34, 04020018. [Google Scholar] [CrossRef]
- Cui, J.Q.; Broere, W.; Lin, D. Underground space utilisation for urban renewal. Tunn. Undergr. Space Technol. 2021, 108, 103726. [Google Scholar] [CrossRef]
- Alzoubi, M.; Xu, M.H.; Hassani, F.; Poncet, S.; Sasmito, A. Artificial ground freezing: A review of thermal and hydraulic aspects. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 2020, 104, 103534. [Google Scholar] [CrossRef]
- Pang, C.Q.; Cai, H.B.; Hong, R.B.; Li, M.K.; Yang, Z. Evolution Law of Three-Dimensional Non-Uniform Temperature Field of Tunnel Construction Using Local Horizontal Freezing Technique. Appl. Sci. 2022, 12, 8093. [Google Scholar] [CrossRef]
- Alireza, A.; Hirokazu, A. Artificial ground freezing application in shield tunneling. Jpn. Geotech. Soc. Spec. Publ. 2015, 3, 71–75. [Google Scholar]
- Lu, X.L.; Chen, X. Risk prevention and control of artificial ground freezing (AGF). Chin. J. Geotech. Eng. 2021, 43, 2308–2314. [Google Scholar]
- Zhang, M.Y.; Zhang, X.Y.; Li, S.Y.; Lu, J.G.; Pei, W.S. Effect of Temperature Gradients on the Frost heaving of a Saturated Silty Clay with a Water Supply. J. Cold Reg. Eng. 2017, 31, 04017011. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhang, X.Y.; Lu, J.G.; Peng, W.S.; Wang, C. Analysis of volumetric unfrozen water contents in freezing soils. Exp. Heat Transf. 2019, 32, 426–438. [Google Scholar] [CrossRef]
- Hou, S.S.; Yang, Y.G.; Cai, C.Z.; Chen, Y.; Li, F.L.; Lei, D.W. Modeling heat and mass transfer during artificial ground freezing considering the influence of water seepage. Int. J. Heat Mass Transf. 2022, 2022 Pt 1, 194. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, Z.Q.; Wang, C.H.; Li, Z.Y.; Zhou, H.D.; Pei, W.S. Analysis of Freeze–Thaw Response and Pore Characteristics of Artificially Frozen Soft Soil under Combined Formation Seepage. Appl. Sci. 2022, 12, 10687. [Google Scholar] [CrossRef]
- Ji, Y.J.; Zhou, G.Q.; Hall, M.R. Frost heaving and frost heaving-induced pressure under various restraints and thermal gradients during the coupled thermal-hydro processes in freezing soil. Bull. Eng. Geol. Environ. 2019, 78, 3671–3683. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Xiao, S.Q.; Zhou, J. Deformation Prediction and Deformation Characteristics of Multilayers of Mucky Clay under Artificial Freezing Condition. KSCE J. Civ. Eng. 2019, 23, 1064–1076. [Google Scholar]
- Cai, H.B.; Liu, Z.; Li, S. Improved analytical prediction of ground frost heaving during tunnel construction using artificial ground freezing technique. Tunn. Undergr. Space Technol. 2019, 92, 103050. [Google Scholar]
- Lai, Y.M.; Wu, Z.; Zhu, Y.; Zhu, L. Nonlinear Analyses for the Couple Problem of Temperature, Seepage and Stress Field in Cold Region Tunnels. Cold Reg. Sci. Technol. 1999, 29, 89–96. [Google Scholar] [CrossRef]
- Lai, Y.M.; Pei, W.S.; Zhang, M.Y. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil. Int. J. Heat Mass Transf. 2014, 78, 805–819. [Google Scholar]
- Wang, T.L.; Song, H.F.; Shu, Y.; Zhang, F.; He, Y.M. Temperature field of artificially frozen gravel formation and optimization of freezing pipe layout parameters under seepage flow. Geofluids 2022, 2022, 1597645. [Google Scholar]
- Marwan, A.; Zhou, M.M.; Abdelrehim, M.Z.; Guenther, M. Optimization of artificial ground freezing in tunneling in the presence of seepage flow. Comput. Geotech. 2016, 75, 112–125. [Google Scholar]
- Li, Z.M.; Chen, J.; Sugimoto, M.; Ge, H.Y. Numerical simulation model of artificial ground freezing for tunneling under seepage flow conditions. Tunn. Undergr. Space Technol. 2019, 92, 103035. [Google Scholar] [CrossRef]
- Huang, S.B.; Guo, Y.L.; Liu, Y.Z.; Ke, L.H.; Liu, G.F.; Chen, C. Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing. Appl. Therm. Eng. 2018, 135, 435–445. [Google Scholar] [CrossRef]
- Yang, X.; Ji, Z.Q.; Zhang, P.; Qi, J.L. Model test and numerical simulation on the development of artificially freezing wall in sandy layers considering water seepage. Transp. Geotech. 2019, 21, 100293. [Google Scholar] [CrossRef]
- Zhang, M.L.; Guo, Z.Y.; Han, X.B.; Wang, B.; Wei, H.T.; Gao, Q. Analysis of coupled water and heat transfer in frozen soil based on mathematical module of COMSOL multiphysics. Sci. Technol. Eng. 2018, 18, 7–12. [Google Scholar]
- Cheng, H.; Lin, J.; Wang, B.; Rong, C.X. Mathematical model and test verification of seepage freezing in saturated sand layer. Sci. Technol. Eng. 2018, 18, 38–44. [Google Scholar]
- Wang, B.; Rong, C.X.; Cheng, H.; Cai, H.B. Experimental investigation on heat transfer law of multiple freezing pipes in permeable stratum with high seepage velocity. Int. J. Heat Mass Transf. 2022, 182, 121868. [Google Scholar] [CrossRef]
- Cai, H.B.; Yao, F.X.; Hong, R.B.; Lin, J.; Zeng, K. Multi-loop pipe freezing optimization of deep shaft considering seepage effect. Arab. J. Geosci. 2022, 15, 153. [Google Scholar] [CrossRef]
- Zheng, H.; Kanie, S.J.; Niu, F.J.; Akagawa, S.; Li, A.Y. Application of practical one-dimensional frost heaving estimation method in two-dimensional situation. Soils Found. 2016, 56, 904–914. [Google Scholar] [CrossRef]
- Cai, H.B.; Hong, R.B.; Xu, L.X.; Wang, C.B.; Rong, C.X. Frost heaving and thawing settlement of the ground after using a freeze-sealing pipe-roof method in the construction of the Gongbei Tunnel. Tunn. Undergr. Space Technol. 2022, 125, 104503. [Google Scholar] [CrossRef]
- Hong, R.B.; Cai, H.B.; Li, M.K. Factor’s Influence Analysis of Frost heaving during the Twin-Tunnel Construction Using Artificial Horizontal Ground Freezing Method. Adv. Civ. Eng. 2020, 2020, 6650182. [Google Scholar]
Buried Depth | Seepage Velocities | ||||
---|---|---|---|---|---|
0 m/d | 0.5 m/d | 1.0 m/d | 1.5 m/d | 2.0 m/d | |
11 m | Model 11-1 | 11-2 | 11-3 | 11-4 | 11-5 |
13 m | Model 13-1 | 13-2 | 13-3 | 13-4 | 13-5 |
15 m | Model 15-1 | 15-2 | 15-3 | 15-4 | 15-5 |
Materials | Density/(kg·m−3) | Thermal Conductivity/(kcal·m−1·h−1·°C−1) | Latent Heat/(kcal·kg−1) | Specific Heat Capacity/(kcal·kg−1·°C−1) | Permeability Coefficient /(m·d−1) |
---|---|---|---|---|---|
Soil | 2110 | 1.55 | - | 0.301 | - |
Frozen soil | - | 1.792 | 12.736 | - | 5.3 × 10−4 |
Unfrozen soil | - | 1.252 | 12.736 | - | 4.6 × 10−2 |
Water | 1000 | 0.56 | - | 0.495 | - |
Ice | 918 | 2.24 | - | 0.998 | - |
Names | Elastic Modulus (MPa) | Poisson’s Ratio | Cohesion (kPa) | Friction Angle (°) |
---|---|---|---|---|
Frozen soil | 44.27 + 7.73|T| | 0.25 | - | - |
Unfrozen soil | 24 | 0.35 | 15 | 20 |
Seepage Velocity (m/d) | T1 (d) | T2 (d) | LAB (m) | LBC (m) | LDE (m) | LEF (m) |
---|---|---|---|---|---|---|
0 | 9 | 41 | 1.139 | 1.258 | 1.281 | 1.135 |
1.0 | 24 | 83 | 0.752 | 2.258 | 2.112 | 1.726 |
2.0 | 61 | 121 | 0.247 | 2.348 | 2.347 | 1.759 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Cai, H.; Liu, Z.; Pang, C.; Hong, R. Research on Frost Heaving Distribution of Seepage Stratum in Tunnel Construction Using Horizontal Freezing Technique. Appl. Sci. 2022, 12, 11696. https://doi.org/10.3390/app122211696
Li M, Cai H, Liu Z, Pang C, Hong R. Research on Frost Heaving Distribution of Seepage Stratum in Tunnel Construction Using Horizontal Freezing Technique. Applied Sciences. 2022; 12(22):11696. https://doi.org/10.3390/app122211696
Chicago/Turabian StyleLi, Mengkai, Haibing Cai, Zheng Liu, Changqiang Pang, and Rongbao Hong. 2022. "Research on Frost Heaving Distribution of Seepage Stratum in Tunnel Construction Using Horizontal Freezing Technique" Applied Sciences 12, no. 22: 11696. https://doi.org/10.3390/app122211696
APA StyleLi, M., Cai, H., Liu, Z., Pang, C., & Hong, R. (2022). Research on Frost Heaving Distribution of Seepage Stratum in Tunnel Construction Using Horizontal Freezing Technique. Applied Sciences, 12(22), 11696. https://doi.org/10.3390/app122211696