Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python
Abstract
:1. Introduction
2. Complex Load and Reliability Modeling
2.1. Components of the Complex load
Each Component of the Complex Load
2.2. Reliability Modeling under Complex Load
3. Derrick Model and Calculation Parameters under Complex Load
3.1. Numerical Model and Validation
3.2. Numerical Plan and Parameters
4. Influence of Each Component under Complex Load
4.1. Influence of Hook Load
4.2. Influence of Stand Load
4.3. Influence of Wind Load
5. Discussion
5.1. The Contribution of Each Load to Strength and Reliability
5.2. The Minimum Value of β under Complex Load
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
q | weight per unit length of stand, kg/m |
l | length of stand, m |
n | number of stands |
θ | angle between stand and setback floor, ° |
Pl | horizontal component of stand’s gravity, N |
Pw | horizontal component of stand’s wind load, N |
W | calculated wind pressure, Pa |
n’ | number of stands per row |
d | diameter of stand, m |
v | wind speed, m/s |
W0 | basic wind pressure, Pa |
kz | wind pressure coefficients |
kp | shape coefficient of wind pressure |
P | equivalent static wind load, N |
F | area of bearing wind load, m2 |
σji | the stress of the i-th element in the j-th strength analysis, MPa |
μi | stress mean of i-th element, MPa |
si | stress standard deviation of i-th element, MPa |
N | the number of cycles |
βf | reliability index of front column |
βr | reliability index of rear column |
βmin | minimum reliability index |
EX | random variable of elastic modulus |
R | random variable of yield strength |
GZ | random variable of hook load |
Wz_L | random variable of stand wind pressure |
Wz(i) (i = 0,1,2,3,4) | random variable of back wind pressure of each derrick section |
x | random sample |
M | total number of elements |
A | stress matrix |
U | stress mean matrix |
S | stress variance matrix |
Zi | stress–strength limit state function |
Si | random variable of stress of i-th element |
βi | reliability index of i-th element |
μR | yield strength mean of i-th element, MPa |
sR | yield strength standard deviation of i-th element, MPa |
Appendix A. Part of APDL Code
- # parameter of material
- e_x = random.normalvariate(u_ex, s_ex)
- mapdl.mp(‘ex’, 1, e_x)
- mapdl.mp(‘nuxy’, 1, 0.28)
- mapdl.mp(‘dens’, 1, 7850)
- ……
- # strength analysis
- mapdl.prep7()
- mapdl.allsel()
- mapdl.antype(‘static’, ‘new’)
- #boundary
- mapdl.run(‘KSEL,S,,,185,188,1’)
- mapdl.run(‘DK,ALL,,,,0,UX,UY,UZ,ROTX,ROTZ,,’)
- #gravity of derrick
- mapdl.acel(acel_z=‘9.8’)
- #stand load
- mapdl.run(‘KSEL,S,,,146,148,2’)
- mapdl.run(‘FK,ALL,FX,’ + str(lgzh)+’/2’)
- # wind load of section IV
- mapdl.run(‘KSEL,S,,,61,65,1’)
- mapdl.run(‘KSEL,A,,,83,87,1’)
- mapdl.run(‘FK,ALL,FX,’ + str(F4) + ‘/10’)
- ……
- #top four keypoints
- mapdl.run(‘KSEL,S,,,22,88,22’)
- mapdl.run(‘FK,ALL,FZ,-’ + str(gz) + ‘/4’)
- #gravity of racking board
- mapdl.run(‘KSEL,S,,,145,148,1’)
- mapdl.run(‘FK,ALL,FZ,-35000/4’)
- mapdl.slashsolu()
- mapdl.allsel()
- mapdl.solve()
Appendix B. Part of Python Code
- one_jz = np.ones(((1, xh_num)))
- xh_stress_jz = np.mat(xh_stress)
- U = 1/xh_num * np.dot(one_jz, xh_stress_jz)
- B = U
- for i in range(1, xh_num):
- B = np.concatenate((B, U))
- B_jz = np.mat(B)
- I_jz = xh_stress_jz − B_jz
- I_zz_jz = np.transpose(I_jz)
- S_jz = 1/xh_num * np.dot(I_zz_jz, I_jz)
- S = []
- for i in range(0, totalnum):
- S.append(S_jz[i, i])
- KKDZB = []
- for i in range(0, totalnum):
- kkd = (345e6 − U [0, i])/math.sqrt((26.44e6) ** 2 + S[i])
- KKDZB.append(kkd)
- return KKDZB
References
- Jiang, F.G.; Zhang, M.; Yang, X.J.; Liang, Z. Equal-strength multi-objective optimization of dual derricks of the seventh-generation ultra-deep water offshore drilling rigs. Nat. Gas Ind. 2020, 40, 124–132. [Google Scholar]
- Liu, T.L.; Sun, Q.L.; Zhang, H.; Yi, S.; Feng, D. Study on strength calculation of workover rig derrick based on API extreme conditions. J. Saf. Sci. Technol. 2019, 15, 66–71. [Google Scholar]
- Gao, K. Safety Assessment of Oil Derrick with Damage under Designed Wind Load. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2017. [Google Scholar]
- Huang, Z.Q.; Ji, S.D.; Zhang, B.; Qiu, C.S.; Xi, Y.X. Offshore derrick safety evaluation based on the test and simulation analysis. J. Mech. Strength 2016, 38, 721–728. [Google Scholar]
- Liang, L.H.; Gao, Z.L.; Wang, S.N. Structural Strength and buckling analysis for a steel derrick after its members removed partly. Key Eng. Mater. 2007, 353-358, 424–428. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, K.; Wu, D.; Li, D.; Fu, J.Y.; Wu, J.X. The finite element analysis of static strength of workover derrick by truck. Adv. Mater. Res. 2012, 503-504, 918–922. [Google Scholar] [CrossRef]
- Yang, X.H.; Zhang, B.C.; Chen, Z.F. Mechanical analysis and optimization design of oilfield workover derricks. Pet. Explor. Dev. 2007, 34, 488–492. [Google Scholar]
- Zhu, L.; Geng, Y. Reliability analysis of double derrick based on stress analysis. Key Eng. Mater. 2016, 667, 548–554. [Google Scholar] [CrossRef]
- Han, D.Y.; Wang, Z.L.; Zhu, J.L. Analysis of residual life of derrick steel structure based on the time-varying reliability and fatigue effects. Acta Metrol. Sin. 2015, 36, 491–495. [Google Scholar]
- Zheng, Y.; He, D.S.; Cheng, Y.; Mo, L. Time-dependent reliability analysis of oil derrick structures in mechanism failure mode. Int. J. Steel Struct. 2020, 20, 985–1002. [Google Scholar] [CrossRef]
- Catbas, F.N.; Susoy, M.; Frangopol, D.M. Structural health monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data. Eng. Struct. 2008, 30, 2347–2359. [Google Scholar] [CrossRef]
- Çeribaşı, S. Reliability of steel truss roof Systems under variable snow load profiles. Int. J. Steel Struct. 2020, 20, 567–582. [Google Scholar] [CrossRef]
- Niu, X.P.; Wang, R.Z.; Liao, D.; Zhu, S.P.; Zhang, X.C.; Keshtegar, B. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks. Int. J. Fatigue 2021, 142, 105912. [Google Scholar] [CrossRef]
- Brites, R.D.; Neves, L.C.; Machado, J.S.; Lourenço, P.B.; Sousa, H.S. Reliability analysis of a timber truss system subjected to decay. Eng. Struct. 2013, 46, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.J. The Structural Strength and Reliability Analysis of K Type Derrick and Substructure; Southwest Petroleum University: Chengdu, China, 2017. [Google Scholar]
- Xu, D.J.; Lian, Z.H.; Zhang, Z.D.; Jing, J.J. The structural strength reliability assessment of K type oil derrick. Comput. Simul. 2016, 33, 189–193. [Google Scholar]
- Mochocki, W.; Obara, P.; Turant, J. Influence of truss topology on reliability index. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 52–61. [Google Scholar] [CrossRef]
- Han, D.Y.; Luo, G.; Wei, S.M.; Wei, Q.; Du, C.W. Random reliability analysis of oil derrick based on APDL Second development. In Proceedings of the International Field Exploration and Development Conference, Xi’an, China, 20–21 September 2015. [Google Scholar]
- Leonel, E.D.; Chateauneuf, A.; Venturini, W.S. Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation. Int. J. Fatigue 2010, 32, 1823–1834. [Google Scholar] [CrossRef]
- Yin, X.W.; Qian, W.X.; Pham, H. Parametric simulation analysis and reliability of escalator truss. Open Phys. 2018, 16, 938–942. [Google Scholar] [CrossRef]
Location | Area of Bearing Wind Load F/m2 | Wind Pressure Coefficients kz | Shape Coefficient of Wind Pressure kp |
---|---|---|---|
Section IV | 33.83 | 1.64 | 0.338 |
Section III | 50.45 | 1.50 | 0.246 |
Section II | 67.08 | 1.33 | 0.203 |
Section I | 83.71 | 1.07 | 0.183 |
Bottom | 65.32 | 0.42 | 0.395 |
Stand | 109.46 | 1.26 | 1.3 |
Number | Hook Load/kN | Number of Stands | Wind Load/m/s |
---|---|---|---|
1 | 750, 1500, 2250, 3000 | / | / |
2 | 750 | 100, 150, 200, 250 | / |
3 | 750 | 250 | 20, 25, 30, 35 |
Variable Name | Variable Symbol | Distribution | Mean/μ | SD/s |
---|---|---|---|---|
Elastic Modulus | EX | Normal | 206 GPa | 10 GPa |
Yield Strength | R | Normal | 345 MPa | 26.44 MPa |
750 kN Hook Load | GZ | Normal | 750,000 N | 8695 N |
1500 kN Hook Load | GZ | Normal | 1,500,000 N | 17,389 N |
2250 kN Hook Load | GZ | Normal | 2,250,000 N | 26,084 N |
3000 kN Hook Load | GZ | Normal | 3,000,000 N | 34,779 N |
20 m/s Standing wind pressure | Wz_L | Log-normal | 315 Pa | 53.86 Pa |
25 m/s Standing wind pressure | Wz_L | Log-normal | 492.19 Pa | 84.16 Pa |
30 m/s Standing wind pressure | Wz_L | Log-normal | 708.75 Pa | 121.20 Pa |
35 m/s Standing wind pressure | Wz_L | Log-normal | 964.69 Pa | 164.96 Pa |
20 m/s Section IV wind pressure | Wz (4) | Log-normal | 410 Pa | 70.11 Pa |
25 m/s Section IV wind pressure | Wz (4) | Log-normal | 640.63 Pa | 109.55 Pa |
30 m/s Section IV wind pressure | Wz (4) | Log-normal | 922.5 Pa | 157.75 Pa |
35 m/s Section IV wind pressure | Wz (4) | Log-normal | 1255.63 Pa | 214.71 Pa |
20 m/s Section III wind pressure | Wz (3) | Log-normal | 375 Pa | 64.12 Pa |
25 m/s Section III wind pressure | Wz (3) | Log-normal | 585.94 Pa | 100.19 Pa |
30 m/s Section III wind pressure | Wz (3) | Log-normal | 843.75 Pa | 144.28 Pa |
35 m/s Section III wind pressure | Wz (3) | Log-normal | 1148.44 Pa | 196.38 Pa |
20 m/s Section II wind pressure | Wz(2) | Log-normal | 332.5 Pa | 56.86 Pa |
25 m/s Section II wind pressure | Wz (2) | Log-normal | 519.53 Pa | 88.84 Pa |
30 m/s Section II wind pressure | Wz (2) | Log-normal | 748.13 Pa | 127.93 Pa |
35 m/s Section II wind pressure | Wz (2) | Log-normal | 1018.28 Pa | 174.12 Pa |
20 m/s Section I wind pressure | Wz (1) | Log-normal | 267.5 Pa | 45.74 Pa |
25 m/s Section I wind pressure | Wz (1) | Log-normal | 417.97 Pa | 71.47 Pa |
30 m/s Section I wind pressure | Wz (1) | Log-normal | 601.88 Pa | 102.92 Pa |
35 m/s Section I wind pressure | Wz (1) | Log-normal | 819.22 Pa | 140.09 |
20 m/s Bottom wind pressure | Wz (0) | Log-normal | 105 Pa | 17.95 Pa |
25 m/s Bottom wind pressure | Wz (0) | Log-normal | 164.06 Pa | 28.05 Pa |
30 m/s Bottom wind pressure | Wz (0) | Log-normal | 236.25 Pa | 40.40 Pa |
35 m/s Bottom wind pressure | Wz (0) | Log-normal | 321.56 Pa | 54.99 Pa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Chen, H.; Wan, F.; Liao, F.; Gao, Y.; Cai, C. Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python. Appl. Sci. 2022, 12, 11693. https://doi.org/10.3390/app122211693
Tan Z, Chen H, Wan F, Liao F, Gao Y, Cai C. Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python. Applied Sciences. 2022; 12(22):11693. https://doi.org/10.3390/app122211693
Chicago/Turabian StyleTan, Zhengbo, Hao Chen, Fu Wan, Feilong Liao, Yuan Gao, and Can Cai. 2022. "Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python" Applied Sciences 12, no. 22: 11693. https://doi.org/10.3390/app122211693
APA StyleTan, Z., Chen, H., Wan, F., Liao, F., Gao, Y., & Cai, C. (2022). Influence of Complex Load on the Strength and Reliability of Offshore Derrick by Using APDL and Python. Applied Sciences, 12(22), 11693. https://doi.org/10.3390/app122211693