Special Issue “Application of Non-Linear Dynamics”
Introduction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olejnik, P.; Adamski, P.; Batory, D.; Awrejcewicz, J. Adaptive Tracking PID and FOPID Speed Control of an Elastically Attached Load Driven by a DC Motor at Almost Step Disturbance of Loading Torque and Parametric Excitation. Appl. Sci. 2021, 11, 679. [Google Scholar] [CrossRef]
- El Aroudi, A.; Cañas-Estrada, N.; Debbat, M.; Al-Numay, M. Nonlinear Dynamics and Stability Analysis of a Three-Cell Flying Capacitor DC-DC Converter. Appl. Sci. 2021, 11, 1395. [Google Scholar] [CrossRef]
- El Aroudi, A.; Debbat, M.; Al-Numay, M.; Abouloiafa, A. Fast-Scale Instability and Stabilization by Adaptive Slope Compensation of a PV-Fed Differential Boost Inverter. Appl. Sci. 2021, 11, 2106. [Google Scholar] [CrossRef]
- Di Nino, S.; Zulli, D.; Luongo, A. Nonlinear Dynamics of an Internally Resonant Base-Isolated Beam under Turbulent Wind Flow. Appl. Sci. 2021, 11, 3213. [Google Scholar] [CrossRef]
- Rosinová, D.; Hypiusová, M. Comparison of Nonlinear and Linear Controllers for Magnetic Levitation System. Appl. Sci. 2021, 11, 7795. [Google Scholar] [CrossRef]
- Polcz, P.; Csutak, B.; Szederkényi, G. Reconstruction of Epidemiological Data in Hungary Using Stochastic Model Predictive Control. Appl. Sci. 2022, 12, 1113. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L. Effects of Synaptic Pruning on Phase Synchronization in Chimera States of Neural Network. Appl. Sci. 2022, 12, 1942. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, M. Particle Filter Design for Robust Nonlinear Control System of Uncertain Heat Exchange Process with Sensor Noise and Communication Time Delay. Appl. Sci. 2022, 12, 2495. [Google Scholar] [CrossRef]
- Saeed, N.; Omara, O.; Sayed, M.; Awrejcewicz, J.; Mohamed, M. Non-Linear Interactions of Jeffcott-Rotor System Controlled by a Radial PD-Control Algorithm and Eight-Pole Magnetic Bearings Actuator. Appl. Sci. 2022, 12, 6688. [Google Scholar] [CrossRef]
- Abohamer, M.; Awrejcewicz, J.; Starosta, R.; Amer, T.; Bek, M. Influence of the Motion of a Spring Pendulum on Energy-Harvesting Devices. Appl. Sci. 2021, 11, 8658. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Yang, C. Integration of Freeplay-Induced Limit Cycles Based on a State Space Iterating Scheme. Appl. Sci. 2021, 11, 741. [Google Scholar] [CrossRef]
- Lu, J.; Wu, Z.; Yang, C. High-Fidelity Fin–Actuator System Modeling and Aeroelastic Analysis Considering Friction Effect. Appl. Sci. 2021, 11, 3057. [Google Scholar] [CrossRef]
- Kulke, V.; Thunich, P.; Schiefer, F.; Ostermeyer, G. A Method for the Design and Optimization of Nonlinear Tuned Damping Concepts to Mitigate Self-Excited Drill String Vibrations Using Multiple Scales Lindstedt-Poincaré. Appl. Sci. 2021, 11, 1559. [Google Scholar] [CrossRef]
- Amer, T.; Starosta, R.; Elameer, A.; Bek, M. Analyzing the Stability for the Motion of an Unstretched Double Pendulum near Resonance. Appl. Sci. 2021, 11, 9520. [Google Scholar] [CrossRef]
- Amer, W.; Amer, T.; Hassan, S. Modeling and Stability Analysis for the Vibrating Motion of Three Degrees-of-Freedom Dynamical System Near Resonance. Appl. Sci. 2021, 11, 11943. [Google Scholar] [CrossRef]
- Germoso, C.; Duval, J.; Chinesta, F. Harmonic-Modal Hybrid Reduced Order Model for the Efficient Integration of Non-Linear Soil Dynamics. Appl. Sci. 2020, 10, 6778. [Google Scholar] [CrossRef]
- Zhang, Z.; Sattel, T.; Zhu, Y.; Li, X.; Dong, Y.; Rui, X. Mechanism and Characteristics of Global Varying Compliance Parametric Resonances in a Ball Bearing. Appl. Sci. 2020, 10, 7849. [Google Scholar] [CrossRef]
- Lee, J.; Chen, S. Non-Linear Qualitative Dynamic Analysis of Supercritical Water-Heated Channels under External Vertical Accelerations. Appl. Sci. 2021, 11, 1695. [Google Scholar] [CrossRef]
- Oborin, E.; Irschik, H. Application of a Novel Picard-Type Time-Integration Technique to the Linear and Non-Linear Dynamics of Mechanical Structures: An Exemplary Study. Appl. Sci. 2021, 11, 3742. [Google Scholar] [CrossRef]
- Rysak, A.; Gregorczyk, M. Differential Transform Method as an Effective Tool for Investigating Fractional Dynamical Systems. Appl. Sci. 2021, 11, 6955. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Ying, Y.; Pang, Z. Analysis of the Dynamic Stiffness, Hysteresis Resonances and Complex Responses for Nonlinear Spring Systems in Power-Form Order. Appl. Sci. 2021, 11, 7722. [Google Scholar] [CrossRef]
- Gosea, I. Exact and Inexact Lifting Transformations of Nonlinear Dynamical Systems: Transfer Functions, Equivalence, and Complexity Reduction. Appl. Sci. 2022, 12, 2333. [Google Scholar] [CrossRef]
- Hong, J.; Jiang, L.; Wang, Y.; Su, Z.; Ma, Y. Nonlinear Dynamics of an Elastic Stop System and Its Application in a Rotor System. Appl. Sci. 2022, 12, 5103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starosta, R.; Awrejcewicz, J. Special Issue “Application of Non-Linear Dynamics”. Appl. Sci. 2022, 12, 11006. https://doi.org/10.3390/app122111006
Starosta R, Awrejcewicz J. Special Issue “Application of Non-Linear Dynamics”. Applied Sciences. 2022; 12(21):11006. https://doi.org/10.3390/app122111006
Chicago/Turabian StyleStarosta, Roman, and Jan Awrejcewicz. 2022. "Special Issue “Application of Non-Linear Dynamics”" Applied Sciences 12, no. 21: 11006. https://doi.org/10.3390/app122111006
APA StyleStarosta, R., & Awrejcewicz, J. (2022). Special Issue “Application of Non-Linear Dynamics”. Applied Sciences, 12(21), 11006. https://doi.org/10.3390/app122111006