Rearing Conditions and Automated Feed Distribution Systems for Zebrafish (Danio rerio)
Abstract
:1. Introduction
2. Standard Rearing Conditions/Parameters
3. Designed Culture Systems
Microfluidic System | Description |
---|---|
Wielhouwer et al. [43] | On-chip culturing of more than 100 zebrafish embryos for real-time imaging, thanks to three borosilicate glass layers bonded together and two sets of flow-through systems for the circulation of buffer medium and warm water. |
Zhou et al. [44] | A chip with the exact well interspacing of a 96-well plate designed for entrapping, culturing, and treatment of zebrafish embryos. The chip is composed of 12 microscale clusters, an array of 21 embryos traps, inlet and outlet ports, and a suction channel that exerts a force to immobilize embryos. |
Akanji et al. [37] | A chip for a one-step automatic loading, hydrodynamic positioning, trapping, and long-term immobilization of single embryos. |
Bischel et al. [45] | A device with branching channels for manual loading, positioning, and orientation of 3–5 dpf zebrafish larvae, allowing both dorsal and lateral view of the fish. |
Lin et al. [46,47] | A device consisting of two side-by-side horizontal channels bridged by a series of short, tapered channels and of a hydrodynamic force continuously applied. This force allows the loading and the immobilization of larvae which, once entrapped, can act as a plug directing the following larvae towards the empty channels in a sequential manner. |
4. Feeding Requirements
4.1. Formulated Diets
4.2. Feeding Management
5. Automated Feeding Systems
6. Conclusions and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Inform Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, T.Y.; Choi, T.I.; Lee, Y.R.; Choe, S.K.; Kim, C.H. Zebrafish as animal model for biomedical research. Exp. Mol. Med. 2021, 53, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Bambino, K.; Chu, J. Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol. 2017, 124, 331–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiley, D.S.; Redfield, S.E.; Zon, L.I. Chemical screening in zebrafish for novel biological and therapeutic discovery. Meth. Cell. Biol. 2017, 138, 651–679. [Google Scholar] [CrossRef] [Green Version]
- Bradford, Y.M.; Toro, S.; Ramachandran, S.; Ruzicka, L.; Howe, D.G.; Eagle, A.; Kalita, P.; Martin, R.; Taylor Moxon, S.A.; Schaper, L.; et al. Zebrafish models of human disease: Gaining insight into human disease at ZFIN. ILAR J. 2017, 58, 4–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, L.V.G. Zebrafish as a model for fish diseases in aquaculture. Pathogens 2020, 9, 609. [Google Scholar] [CrossRef] [PubMed]
- Ribas, L.; Piferrer, F. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev. Aquac. 2013, 5, 1–32. [Google Scholar] [CrossRef]
- Espino-Saldaña, A.E.; Rodríguez-Ortiz, R.; Pereida-Jaramillo, E.; Martínez-Torres, A. Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR. Curr. Neuropharmacol. 2020, 18, 136–152. [Google Scholar] [CrossRef] [PubMed]
- Shehwana, H.; Konu, O. Comparative transcriptomics between zebrafish and mammals: A roadmap for discovery of conserved and unique signaling pathways in physiology and disease. Front. Cell. Dev. Bio. 2019, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish genome sequence and its relationship to human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzicka, L.; Howe, D.G.; Ramachandran, S.; Toro, S.; Van Slyke, C.E.; Bradford, Y.M.; Eagle, A.; Fashena, D.; Frazer, K.; Kalita, P.; et al. The Zebrafish Information Network: New support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic Acids Res. 2019, 47, D867–D873. [Google Scholar] [CrossRef]
- Choe, C.P.; Choi, S.Y.; Kee, Y.; Kim, M.J.; Kim, S.H.; Lee, Y.; Park, H.C.; Ro, H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim. Res. 2021, 37, 26. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.E.; Medrano, J.F.; Feijoo, C.G. Zebrafish as animal model for aquaculture nutrition research. Front. Genet. 2014, 5, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.B.; Watts, S.A. Current basis and future directions of zebrafish nutrigenomics. Genes Nutr. 2019, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Requeni, P.; de Vareilles, M.; Kousoulaki, K.; Jordal, A.E.O.; Conceição, L.E.C.; Rønnestad, I. Whole body proteome response to a dietary lysine imbalance in zebrafish Danio rerio. Comp. Biochem. Physiol. Part D Genom. Proteomics 2011, 6, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Vacca, F.; Barca, A.; Gomes, A.S.; Mazzei, A.; Piccinni, B.; Cinquetti, R.; Del Vecchio, G.; Romano, A.; Rønnestad, I.; Bossi, E.; et al. The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: Molecular characterization, functional properties, and expression analysis. Genes Nutr. 2019, 14, 33. [Google Scholar] [CrossRef]
- Gomez-Requeni, P.; Conceição, L.E.C.; Jordal, A.E.O.; Rønnestad, I. A reference growth curve for nutritional experiments in zebrafish (Danio rerio) and changes in whole body proteome during development. Fish Physiol. Biochem. 2010, 36, 1199–1215. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, A.; Ferrand, G.; Cruz, I.G.; Warot, X. Mouse Breeding and Colony Management. Curr. Protoc. Mouse Biol. 2011, 1, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Huang, C.W.; Lin, C.Y.; Ho, C.H.; Pham, H.N.; Hsu, T.H.; Lin, T.T.; Chen, R.H.; Yang, S.D.; Chang, C.I.; et al. Development of Disease-Resistance-Associated Microsatellite DNA Markers for Selective Breeding of Tilapia (Oreochromis spp.) Farmed in Taiwan. Genes 2021, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Dunham, R.A.; Elaswad, A. Catfish biology and farming. Annu. Rev. Anim. Biosci. 2018, 6, 305–325. [Google Scholar] [CrossRef]
- Gjedrem, T.; Baranski, M. Selective Breeding in Aquaculture: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 10.
- Menon, A.G.K. Check List—Fresh Water Fishes of India; Zoological Survey of India: Kolkata, India, 1999; Volume 175, pp. 234–259. ISBN 81-85874-15-8. [Google Scholar]
- Daniels, R.J.R. Freshwater Fishes of Penisular India; Universities Press: Hyderabad, India, 2002. [Google Scholar]
- Bhat, A. Diversity and composition of freshwater fishes in streams of Central Western Ghats, India. Environ. Biol. Fish 2003, 68, 25–38. [Google Scholar] [CrossRef]
- Arunachalam, M.; Raja, M.; Vijayakumar, C.; Mayden, R.L. Natural history of zebrafish (Danio rerio) in India. Zebrafish 2013, 10, 1–14. [Google Scholar] [CrossRef]
- Engeszer, R.E.; Patterson, L.B.; Rao, A.A.; Parichy, D.M. Zebrafish in the wild: A review of natural history and new notes from the field. Zebrafish 2007, 4, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 2007, 269, 1–20. [Google Scholar] [CrossRef]
- Westerfield, M. The Zebrafish Book. In A Guide for the Laboratory Use of Zebrafish (Brachidanio renio), 2nd ed.; Eugene, O.R., Ed.; University of Oregon Press: Corvallis, OR, USA, 1993. [Google Scholar]
- Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, C.; Mason, T. Zebrafish housing systems: A review of basic operating principles and considerations for design and functionality. ILAR J. 2012, 53, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, S.A.; Powell, M.; D’Abramo, L.R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 2012, 53, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Paull, G.C.; Tyler, C.R. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol. Rev. Camb. Philos. Soc. 2022, 97, 1038–1056. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.; Granato, M.; Nüsslein-Volhard, C. Keeping and raising zebrafish. In Zebrafish: A Practical Approach; Nuesslein-Volhard, C., Dahm, R., Eds.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Bhargava, Y. Open-design recirculating system for zebrafish culture. Aquac. Eng. 2018, 81, 71–79. [Google Scholar] [CrossRef]
- Hohn, C.; Petrie-Hanson, L. Low-cost aquatic lab animal holding system. Zebrafish 2007, 4, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Streisinger, G.; Walker, C.; Dower., N.; Knauber, D.; Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981, 291, 293–296. [Google Scholar] [CrossRef]
- Akanji, J.; Khoshmanesh, K.; Evans, B.; Hall, C.J.; Crosier, K.E.; Cooper, J.M.; Crosier, P.S.; Wlodkowic, D. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS ONE 2012, 7, e36630. [Google Scholar] [CrossRef] [Green Version]
- Khalili, A.; Rezai, P. Microfluidic devices for embryonic and larval zebrafish studies. Brief. Funct. Genom. 2019, 18, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Burg, L.; Gill, R.; Balciuniene, J.; Balciunas, D. SideRack: A cost-effective addition to commercial zebrafish housing systems. Zebrafish 2014, 11, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paige, C.; Hill, B.; Canterbury, J.; Sweitzer, S.; Romero-Sandoval, E.A. Construction of an affordable and easy-to-build zebrafish facility. J. Vis. Exp. 2014, 93, e51989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nema, S.; Bhargava, Y. Designing and Testing of Self-Cleaning Recirculating Zebrafish Tanks. Zebrafish 2016, 13, 369–373. [Google Scholar] [CrossRef]
- Nema, S.; Bhargava, Y. Open-RAC: Open-Design, Recirculating and Auto-Cleaning Zebrafish Maintenance System. Zebrafish 2017, 14, 371–378. [Google Scholar] [CrossRef]
- Wielhouwer, E.M.; Ali, S.; Al-Afandi, A.; Blom, M.T.; Olde-Riekerink, M.B.; Poelma, C.; Westerweel, J.; Oonk, J.; Vrouwe, E.X.; Buesink, W.; et al. Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 2011, 11, 1815–1824. [Google Scholar] [CrossRef]
- Zhou, F.; Wigh, A.; Friedrich, T.; Devaux, A.; Bony, S.; Nugegoda, D.; Kaslin, J.; Wlodkowic, D. Automated Lab-on-Chip technology for fish embryo toxicity test performed under continuous microperfusion (µFET). Environ. Sci. Technol. 2015, 49, 14570–14578. [Google Scholar] [CrossRef]
- Bischel, L.L.; Mader, B.R.; Green, J.M.; Huttenlocher, A.; Beebe, D.J. Zebrafish entrapment by restriction array (ZEBRA) device: A low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 2013, 13, 1732–1736. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Yu, X.; Liu, Z.; Wang, F.; Li, W.T.; Cheng, S.H.; Dai, Q.; Shi, P. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip 2015, 15, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, V.W.T.; Chen, S.; Chan, C.Y.; Chen, S.H.; Cheng, S.H.C.; Shi, P. Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish. Biomicrofluidics 2016, 10, 024123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, V.W.; Ng, C.Y.; Cheng, S.H.; Yu, K.N. α-Particle irradiated zebrafish embryos rescued by bystander unirradiated zebrafish embryos. Environ. Sci. Technol. 2012, 46, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Maximino, C.; Lima, M.G.; Olivera, K.R.; Picanço-Diniz, D.L.; Herculano, A.M. Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in zebrafish. Basic Clin. Pharmacol. Toxicol. 2011, 109, 203–207. [Google Scholar] [CrossRef]
- Miller, N.; Greene, K.; Dydinski, A.; Gerlai, R. Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav. Brain Res. 2013, 240, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Penglase, S.; Moren, M.; Hamre, K. Labs animal: Standardize the diet for zebrafish model. Nature 2012, 491, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, G.; Makkar, H.P.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Hansen, A.C.; Rosenlund, G.; Karlsen, Ø.; Koppe, W.; Hemre, G.I. Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I—Effects on growth and protein retention. Aquaculture 2007, 272, 599–611. [Google Scholar] [CrossRef]
- Kokou, F.; Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 2018, 495, 295–310. [Google Scholar] [CrossRef]
- Krogdahl, A.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Moldal, T.; Løkka, G.; Wilik-Nielsen, J.; Austbø, L.; Torstensen, B.E.; Rosenlund, G.; Dale, O.B.; Kaldhusdal, M.; Koppang, E.O. Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar). BMC Vet. Res. 2014, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwasek, K.; Wojno, M.; Iannini, F.; McCracken, V.J.; Molinari, G.S.; Terova, G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS ONE 2020, 15, e0225917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, S.; Monteiro, J.F.; Vito, M.; Weintraub, D.; Almeida, J.; Certal, A.C. Toward and integrated zebrafish health management program supporting cancer and neuroscience research. Zebrafish 2016, 13 (Suppl. 1), S47–S55. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.M. Aquaculture, husbandry, and shipping at the Zebrafish International Resource Centre. Methods Cell. Biol. 2016, 135, 509–534. [Google Scholar] [CrossRef]
- Wallace, K.N.; Pack, M. Unique and conserved aspects of gut development in zebrafish (Danio rerio). Dev. Biol. 2003, 255, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Wallace, K.N.; Akther, S.; Smith, E.M.; Lorent, K.; Pack, M. Intestinal growth and differentiation in zebrafish. Mech. Dev. 2005, 122, 157–173. [Google Scholar] [CrossRef]
- Westerfield, M. The Zebrafish Book. In A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th ed.; University of Oregon Press: Eugene, OR, USA, 2007. [Google Scholar]
- Best, J.; Adatto, I.; Cockington, J.; James, A.; Lawrence, C. A novel method for rearing first-feeding larval zebrafish: Polyculture with Type L saltwater rotifers (Brachionus plicatilis). Zebrafish 2010, 7, 289–295. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future need. Aquac. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Araujo, L.; Santos, M.M. Rearing zebrafish (Danio rerio) larvae without live food: Evaluation of a commercial, a practical and a purified starter diet on larval performance. Aquac. Res. 2006, 37, 1107–1111. [Google Scholar] [CrossRef]
- Tye, M.; Rider, D.; Duffy, E.A.; Seubert, A.; Lothert, B.; Schimmenti, L.A. Nonhatching decapsulated artemia cysts as a replacement to Artemia nauplii in juvenile and adult zebrafish culture. Zebrafish 2015, 12, 457–461. [Google Scholar] [CrossRef]
- Sorgeloos, P.; Dhert, P.; Candreva, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 2001, 200, 147–159. [Google Scholar] [CrossRef]
- Tizol-Correa, R.; Carreon-Palau, L.; Arredondo-Vega, B.O.; Murugan, G.; Torrentera, L.; Maldonado-Montiel, T.; Maeda-Martinez, A.M. Fatty acid composition of Artemia (Branchiopoda: Anostraca) cysts from tropical salterns of Southern Mexico and Cuba. J. Crustacean Biol. 2006, 26, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Høj, L.; Bourne, D.G.; Hall, M.R. Localization, abundance and community structure of bacteria associated with Artemia: Effects of nauplii enrichment and antimicrobial treatment. Aquaculture 2009, 293, 278–285. [Google Scholar] [CrossRef]
- McIntosh, D.; Ji, B.; Forward, B.S.; Puvanendran, V.; Boyce, D.; Ritchie, R. Culture-independent characterization of the bacterial populations associated with cod (Gadus morhua L.) and live feed at an experimental hatchery facility using denaturing gradient gel electrophoresis. Aquaculture 2008, 275, 42–50. [Google Scholar] [CrossRef]
- Tye, M.T.; Montgomery, J.E.; Hobbs, M.R.; Vanpelt, K.C.; Masino, M.A. An adult zebrafish diet contaminated with chromium reduces the viability of progeny. Zebrafish 2018, 15, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Tye, M.; Masino, M.A. Dietary contaminants and their effects on zebrafish embryos. Toxics 2019, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naciff, J.M.; Overmann, G.J.; Torontali, S.M.; Carr, G.J.; Tiesman, J.P.; Daston, G.P. Impact of the phytoestrogen content of laboratory animal feed on the gene expression profile of the reproductive system in the immature female rat. Environ. Health Perspect. 2004, 112, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
- Sassi-Messai, S.; Gibert, Y.; Bernard, L.; Nishio, S.; Ferri Lagneau, K.; Molina, J.; Andersson-Lendahl, M.; Benoit, G.; Balaguer, P.; Laudet, V. The phytoestrogen genistein affects zebrafish development through two different pathways. PLoS ONE 2009, 4, e4935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, S.; Georga, I.; Koumoundorous, D. Growth and body composition of zebrafish (Danio rerio) larvae fed a compound feed from first feed onward: Toward implications on nutrient requirements. Zebrafish 2011, 8, 87–95. [Google Scholar] [CrossRef]
- Siccardi, A.J., 3rd; Garris, H.W.; Jones, W.T.; Moseley, D.B.; D’Abramo, L.R.; Watts, S.A. Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish 2009, 6, 275–280. [Google Scholar] [CrossRef]
- Fowler, L.A.; Williams, M.B.; Dennis-Cornelius, L.N.; Farmer, S.; Barry, R.J.; Powell, M.L.; Watts, S.A. Influence of Commercial and Laboratory Diets on Growth, Body Composition, and Reproduction in the Zebrafish Danio rerio. Zebrafish 2019, 16, 508–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, S.A.; D’Abramo, L.R. Standardized Reference Diets for Zebrafish: Addressing Nutritional Control in Experimental Methodology. Annu. Rev. Nutr. 2021, 41, 511–527. [Google Scholar] [CrossRef]
- Reed, B.; Jennings, M. Guidance on the Housing and Care of Zebrafish Danio rerio; Royal Society for the Prevention of Cruelty to Animals: West Sussex, UK, 2010. [Google Scholar]
- Lawrence, C.; Best, J.; James, A.; Maloney, k. The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio). Aquaculture 2012, 368, 103–108. [Google Scholar] [CrossRef]
- Gonzales, J.M., Jr.; Law, S.H.W. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio). Zebrafish 2013, 10, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dametto, F.S.; For, D.; Idalencio, R.; Rosa, J.G.S.; Fagundes, M.; Marqueze, A.; Barreto, R.E.; Piato, A.; Barcellos, L.J.G. Feeding regimen modulates zebrafish behavior. Peer J. 2018, 6, e5343. [Google Scholar] [CrossRef]
- Blanco-Vives, B.; Sánchez-Vázquez, F.J. Synchronization to light and feeding time of circadian rhythms of spawning and locomotor activity in zebrafish. Physiol. Behav. 2009, 98, 268–275. [Google Scholar] [CrossRef]
- Sánchez-Vázquez, F.J.; Madrid, J.A. Feeding anticipatory activity in fish. In DF Houlihan. Food Intake in Fish; Boujard, T., Jobling, M., Eds.; Blackwell Science: Oxford, UK, 2001; pp. 216–232. [Google Scholar]
- Cahill, G.M. Clock mechanisms in zebrafish. Cell. Tissue Res. 2002, 309, 27–34. [Google Scholar] [CrossRef]
- López-Olmeda, J.F.; Madrid, J.A.; Sánchez-Vázquez, F.J. Light and temperature cycles as Zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiol. Int. 2006, 23, 537–550. [Google Scholar] [CrossRef]
- del Pozo, A.; Sánchez-Férez, J.A.; Sánchez-Vázquez, F.J. Circadian rhythms of self-feeding and locomotor activity in zebrafish (Danio rerio). Chronobiol. Int. 2011, 28, 39–47. [Google Scholar] [CrossRef]
- Maed, H.; Fukushima, N.; Hasumi, A. Standardized method for the assessment of behavioral responses of zebrafish larvae. Biomed 2021, 9, 884. [Google Scholar] [CrossRef]
- Grigura, V.; Barbier, M.; Zarov, A.P.; Kaufman, C.K. Feeding amount significantly alters overt tumor onset rate in a zebrafish melanoma model. Biol. Open 2018, 7, bio030726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candelier, R.; Bois, A.; Tronche, S.; Mahieu, J.; Mannioui, A. A Semi-Automatic Dispenser for Solid and Liquid Food in Aquatic Facilities. Zebrafish 2019, 16, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.L.; Wang, Z.H.; Wu, S.Y.; Miao, Z.; Du, L.; Duan, Y.Q. Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture 2020, 528, 735508–735518. [Google Scholar] [CrossRef]
- Wu, T.H.; Huang, Y.I.; Chen, J.M. Development of an adaptive neural-based fuzzy inference system for feeding decision-making assessment in silver perch (Bidyanus bidyanus) culture. Aquac. Eng. 2015, 66, 41–51. [Google Scholar] [CrossRef]
- Argenton, F.; Pivotti, L. Multiple Fishtank Feeding Doser. IT102016000045868, 4 May 2016. [Google Scholar]
- Oltovà, J.; Barton, C.; Certal, A.C.; Argenton, F.; Varga, Z.M. 10th European Zebrafsh Meeting 2017, Budapest: Husbandry Workshop Summary. Zebrafish 2018, 15, 213–215. [Google Scholar] [CrossRef]
- Tangara, A.; Paresys, G.; Bouallaguae, F.; Cabirou, Y.; Fodor, J.; Llobet, V.; Sumbre, G. An open-source and low-cost feeding system for zebrafish facilities. bioRxiv 2019, 1–15. [Google Scholar] [CrossRef]
- Yang, P.; Yamaki, M.; Kuwabara, S.; Kajiwara, R.; Itoh, M. A newly developed feeder and oxygen measurement system reveals the effects of aging and obesity on the metabolic rate of zebrafish. Exp. Gerontol. 2019, 127, 110720. [Google Scholar] [CrossRef]
- Doyle, J.M.; Merovitch, N.; Wyeth, R.C.; Stoyek, M.R.; Schimdt, M.; Wilfart, F.; Fine, A.; Croll, R.P. A simple automated system for appetitive conditioning of zebrafish in their home tanks. Behav. Brain Res. 2017, 317, 444–452. [Google Scholar] [CrossRef]
- Lange, M.; Solak, A.C.; Kumar, S.V.; Kobayashi, H.; Yang, B.; Royer, L.A. ZAF–The First Open Source Fully Automated Feeder for Aquatic Facilities. Elife 2021, 10, e74234. [Google Scholar] [CrossRef]
- Brocca, M.; Frangelli, G. Automated System for Controlled Distribution of Substances to Animal Containment Devices in an Animal Housing Facility. U.S. 8,499,719 B2, 6 August 2013. [Google Scholar]
Specific Parameter | Recommendations |
---|---|
Temperature | Adult zebrafish exhibit tolerance for a wide range of water temperatures (24.0–29.0 °C). For zebrafish embryos and larvae, the recommended rearing temperature is 28.5 °C. Lower temperatures may slow down the development. |
pH | For both larval and adult zebrafish, a pH range from 6.5 to 8.0 is recommended. |
Light/dark cycle | Fourteen hours day (light) and 10 h night (dark) is generally recommended for both adult and larval zebrafish. The light/dark cycle does not seem to affect zebrafish embryonic development. |
Salinity (total concentration of ions dissolved in water) | A range 0.25–0.75 part per thousand (ppt) is recommended for adult and larval zebrafish. |
Conductivity (the quantity of sodium and chloride or calcium and carbonate) | In recirculating water systems, a 150–1700 µS/cm range is recommended. |
Oxygen and NH3 | In recirculating water systems, dissolved oxygen levels are kept at approx. 7.8 mg/L at 28.0 °C. Levels of total ammonia, nitrites, and nitrates are generally kept less than 0.1, 0.3, and 25 mg/L, respectively. |
Hardness (concentration of divalent ions, such as Ca2+ and Mg2+, and carbonate, such as CaCO3 and MgCO3) | A range between 75 and 200 mg/L (generally above 100 mg/L) is generally recommended. |
Density | Adult sexually mature zebrafish are recommended to be maintained in a range between 3 and 12 fish/L. Zebrafish embryos are cultured in 9 cm Petri dishes at a stock density of up to 100 embryos/35 mL. Larval zebrafish from 6 to 16 days post-fertilization (dpf) are recommended to be raised in small tanks with no water flow at a density up to 60 larvae/L. |
Automated Feeding System | Description |
---|---|
del Pozo et al. [81] | A self-feeder system with an infrared photocell acting as a food-demand sensor (high costs). |
Argenton and Pivotti [87] | A small and practical pneumatic device delivering food (low costs). |
Candelier et al. [84] | A semi-automatic dispenser for solid and liquid food (low costs). |
Tangara et al. [89] | An open-source semi-automatic feeding system for dry and live food (low costs). |
Yang et al. [90] | An automatic feeding system coupled with an EthoVision video-tracking system (high costs). |
Doyle et al. [91] | An automatic feeder of precise amounts of foods (low costs). |
Lange et al. [92] | A fully automated solution which provides standardized amounts of diets (high costs). |
Brocca and Frangelli [93] | A robot able to deliver multiple dry and liquid diets (high costs). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Vecchio, G.; Mazzei, A.; Schiavone, R.; Gomes, A.S.; Frangelli, G.; Sala, T.; Fantino, S.; Brocca, M.G.A.; Barca, A.; Rønnestad, I.; et al. Rearing Conditions and Automated Feed Distribution Systems for Zebrafish (Danio rerio). Appl. Sci. 2022, 12, 10961. https://doi.org/10.3390/app122110961
Del Vecchio G, Mazzei A, Schiavone R, Gomes AS, Frangelli G, Sala T, Fantino S, Brocca MGA, Barca A, Rønnestad I, et al. Rearing Conditions and Automated Feed Distribution Systems for Zebrafish (Danio rerio). Applied Sciences. 2022; 12(21):10961. https://doi.org/10.3390/app122110961
Chicago/Turabian StyleDel Vecchio, Gianmarco, Aurora Mazzei, Roberta Schiavone, Ana S. Gomes, Giovanni Frangelli, Tommaso Sala, Stefania Fantino, Marco G. A. Brocca, Amilcare Barca, Ivar Rønnestad, and et al. 2022. "Rearing Conditions and Automated Feed Distribution Systems for Zebrafish (Danio rerio)" Applied Sciences 12, no. 21: 10961. https://doi.org/10.3390/app122110961
APA StyleDel Vecchio, G., Mazzei, A., Schiavone, R., Gomes, A. S., Frangelli, G., Sala, T., Fantino, S., Brocca, M. G. A., Barca, A., Rønnestad, I., & Verri, T. (2022). Rearing Conditions and Automated Feed Distribution Systems for Zebrafish (Danio rerio). Applied Sciences, 12(21), 10961. https://doi.org/10.3390/app122110961