Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette
Abstract
:Featured Application
Abstract
1. Introduction
- To make a measurement which retrieves the total attenuation coefficient () or the effective attenuation coefficient ().
- To make a measurement that can separate both and .
2. Methods
2.1. Geometry
2.2. Types of Measurement
2.3. Analytical Box Model
2.4. Optical Properties Fit
3. Results
3.1. Investigation of Difference Measurements
3.1.1. Variation over Optical Properties
3.1.2. Optode Coupling and Auto-Calibration
3.2. Development of Fit for Absolute Optical Properties
3.2.1. Optimization of Cost Space Shape
3.2.2. Cost Space Shape for Various Optical Properties
3.2.3. Fit Initial Guess
- & .
- & .
- & .
- & .
3.3. Confounds to Fit Retrieved Absolute Optical Properties
3.3.1. Propagation of Noise to Optical Property Uncertainty
- The fractional error in is always larger compared to suggesting the system can more precisely recover .
- Errors in are much larger for small and slightly larger for small (with small and together being the worst case).
- That and are highly negatively correlated (as suggested by Figure 5b,c).
- For :
- –
- Typical error of 4%.
- –
- Worst case error of 20% (for low and ).
- For :
- –
- Typical error of 1%.
- –
- Worst case error of 3% (for high and low ).
3.3.2. Assumption of Index of Refraction
4. Discussion
- If & then has an error of 20% and of 2%.
- If & then has an error of 1% and of %.
- Diffusion theory based cost minimization (shown here).
- Look-up table with Monte-Carlo generated data.
- Look-up table with instrumental measurements of known samples.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbols
Dual-Ratio of the Green’s function for the complex Transmittance () () phase | |
Single-Ratio of the () phase | |
λ | optical wavelength |
natural logarithm of amplitude () | |
natural logarithm of amplitude () | |
μeff | effective attenuation coefficient |
ω | angular modulation frequency |
ρ | source-detector distance |
Dual-Ratio of the | |
Single-Ratio of the | |
position vector | |
complex optical Coupling, power, and/or efficiency factor | |
Green’s function for the complex Transmittance | |
complex effective attenuation coefficient | |
c | speed of light in vacuum |
fmod | modulation frequency |
n | index of refraction |
μa | absorption coefficient |
reduced scattering coefficient | |
μt | total attenuation coefficient |
amplitude | |
amplitude |
References
- Bigio, I.J.; Fantini, S. Quantitative Biomedical Optics: Theory, Methods, and Applications; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Quaresima, V.; Ferrari, M. Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. Organ. Res. Methods 2019, 22, 46–68. [Google Scholar] [CrossRef]
- Rahman, M.A.; Siddik, A.B.; Ghosh, T.K.; Khanam, F.; Ahmad, M. A Narrative Review on Clinical Applications of fNIRS. J. Digit. Imaging 2020, 33, 1167–1184. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; McClure, W.F.; Christy, A.A. (Eds.) Near-Infrared Spectroscopy in Food Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Johnson, J.B. An Overview of Near-Infrared Spectroscopy (NIRS) for the Detection of Insect Pests in Stored Grains. J. Stored Prod. Res. 2020, 86, 101558. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of Miniaturized and Portable near Infrared Spectroscopy (NIRS) for Inspection and Control of Meat and Meat Products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Razuc, M.; Grafia, A.; Gallo, L.; Ramírez-Rigo, M.V.; Romañach, R.J. Near-Infrared Spectroscopic Applications in Pharmaceutical Particle Technology. Drug Dev. Ind. Pharm. 2019, 45, 1565–1589. [Google Scholar] [CrossRef]
- Stranzinger, S.; Markl, D.; Khinast, J.G.; Paudel, A. Review of Sensing Technologies for Measuring Powder Density Variations during Pharmaceutical Solid Dosage Form Manufacturing. TrAC Trends Anal. Chem. 2021, 135, 116147. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, A.; Zhang, X.; Zhang, Z. Authentication and Inference of Seal Stamps on Chinese Traditional Painting by Using Multivariate Classification and Near-Infrared Spectroscopy. Chemom. Intell. Lab. Syst. 2017, 171, 226–233. [Google Scholar] [CrossRef]
- Trant, P.L.K.; Kristiansen, S.M.; Sindbæk, S.M. Visible Near-Infrared Spectroscopy as an Aid for Archaeological Interpretation. Archaeol. Anthropol. Sci. 2020, 12, 280. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Kobori, H. A Review of Recent Application of near Infrared Spectroscopy to Wood Science and Technology. J. Wood Sci. 2015, 61, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Fantini, S.; Sassaroli, A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front. Neurosci. 2020, 14, 300. [Google Scholar] [CrossRef]
- Torricelli, A.; Contini, D.; Pifferi, A.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L. Time Domain Functional NIRS Imaging for Human Brain Mapping. NeuroImage 2014, 85, 28–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foschum, F.; Bergmann, F.; Kienle, A. Precise Determination of the Optical Properties of Turbid Media Using an Optimized Integrating Sphere and Advanced Monte Carlo Simulations. Part 1: Theory. Appl. Opt. 2020, 59, 3203–3215. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, F.; Foschum, F.; Zuber, R.; Kienle, A. Precise Determination of the Optical Properties of Turbid Media Using an Optimized Integrating Sphere and Advanced Monte Carlo Simulations. Part 2: Experiments. Appl. Opt. 2020, 59, 3216–3226. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Martelli, F.; Zaccanti, G. Photon Migration through a Turbid Slab Described by a Model Based on Diffusion Approximation. I. Theory. Appl. Opt. 1997, 36, 4587–4599. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Boas, D.A. Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units. Opt. Express 2009, 17, 20178–20190. [Google Scholar] [CrossRef] [Green Version]
- Hielscher, A.H.; Klose, A.D.; Scheel, A.K.; Moa-Anderson, B.; Backhaus, M.; Netz, U.; Beuthan, J. Sagittal Laser Optical Tomography for Imaging of Rheumatoid Finger Joints. Phys. Med. Biol. 2004, 49, 1147–1163. [Google Scholar] [CrossRef]
- Klose, A.D.; Ntziachristos, V.; Hielscher, A.H. The Inverse Source Problem Based on the Radiative Transfer Equation in Optical Molecular Imaging. J. Comput. Phys. 2005, 202, 323–345. [Google Scholar] [CrossRef]
- Klose, A.D.; Larsen, E.W. Light Transport in Biological Tissue Based on the Simplified Spherical Harmonics Equations. J. Comput. Phys. 2006, 220, 441–470. [Google Scholar] [CrossRef]
- Ho, J.H.; Chin, H.L.; Dong, J.; Lee, K. Multi-Harmonic Homodyne Approach for Optical Property Measurement of Turbid Medium in Transmission Geometry. Opt. Commun. 2012, 285, 2007–2011. [Google Scholar] [CrossRef]
- Taniguchi, J.; Murata, H.; Okamura, Y. Light Diffusion Model for Determination of Optical Properties of Rectangular Parallelepiped Highly Scattering Media. Appl. Opt. 2007, 46, 2649–2655. [Google Scholar] [CrossRef]
- Kienle, A. Light diffusion through a turbid parallelepiped. J. Opt. Soc. Am. A 2005, 22, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Hueber, D.M.; Fantini, S.; Cerussi, A.E.; Barbieri, B.B. New Optical Probe Designs for Absolute (Self-Calibrating) NIR Tissue Hemoglobin Measurements. In Optical Tomography and Spectroscopy of Tissue III; International Society for Optics and Photonics: Bellingham, WA, USA; San Jose, CA, USA, 1999; Volume 3597, pp. 618–631. [Google Scholar] [CrossRef]
- Bevilacqua, F.; Berger, A.J.; Cerussi, A.E.; Jakubowski, D.; Tromberg, B.J. Broadband Absorption Spectroscopy in Turbid Media by Combined Frequency-Domain and Steady-State Methods. Appl. Opt. 2000, 39, 6498–6507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, T.D.; Cerussi, A.E.; Cuccia, D.J.; Tromberg, B.J. Diffuse Optical Imaging Using Spatially and Temporally Modulated Light. J. Biomed. Opt. 2012, 17, 0713111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasudevan, S.; Forghani, F.; Campbell, C.; Bedford, S.; O’Sullivan, T.D. Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions. Appl. Sci. 2020, 10, 1419. [Google Scholar] [CrossRef] [Green Version]
- Blaney, G.; Curtsmith, P.; Sassaroli, A.; Fernandez, C.; Fantini, S. Broadband Absorption Spectroscopy of Heterogeneous Biological Tissue. Appl. Opt. 2021, 60, 7552–7562. [Google Scholar] [CrossRef] [PubMed]
- Sassaroli, A.; Blaney, G.; Fantini, S. Dual-Slope Method for Enhanced Depth Sensitivity in Diffuse Optical Spectroscopy. J. Opt. Soc. Am. A 2019, 36, 1743–1761. [Google Scholar] [CrossRef]
- Blaney, G.; Sassaroli, A.; Pham, T.; Fernandez, C.; Fantini, S. Phase Dual-Slopes in Frequency-Domain near-Infrared Spectroscopy for Enhanced Sensitivity to Brain Tissue: First Applications to Human Subjects. J. Biophotonics 2020, 13, e201960018. [Google Scholar] [CrossRef]
- Fantini, S.; Hueber, D.; Franceschini, M.A.; Gratton, E.; Rosenfeld, W.; Stubblefield, P.G.; Maulik, D.; Stankovic, M.R. Non-Invasive Optical Monitoring of the Newborn Piglet Brain Using Continuous-Wave and Frequency-Domain Spectroscopy. Phys. Med. Biol. 1999, 44, 1543–1563. [Google Scholar] [CrossRef]
- Martelli, F.; Contini, D.; Taddeucci, A.; Zaccanti, G. Photon Migration through a Turbid Slab Described by a Model Based on Diffusion Approximation II Comparison with Monte Carlo Results. Appl. Opt. 1997, 36, 4600–4612. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Wabnitz, H.; Gladytz, T.; Macdonald, R.; Macdonald, R.; Grosenick, D. Spatially-Enhanced Time-Domain NIRS for Accurate Determination of Tissue Optical Properties. Opt. Express 2019, 27, 26415–26431. [Google Scholar] [CrossRef]
- Patterson, M.S.; Chance, B.; Wilson, B.C. Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical Properties. Appl. Opt. 1989, 28, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Aronson, R. Boundary Conditions for Diffusion of Light. JOSA A 1995, 12, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Popescu, G.; Mujat, C.; Dogariu, A. Evidence of Scattering Anisotropy Effects on Boundary Conditions of the Diffusion Equation. Phys. Rev. E 2000, 61, 4523–4529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripoll, J.; Nieto-Vesperinas, M.; Arridge, S.R.; Dehghani, H. Boundary Conditions for Light Propagation in Diffusive Media with Nonscattering Regions. JOSA A 2000, 17, 1671–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Wakil, S.A.; Degheidy, A.R.; Machali, H.M.; El-Depsy, A. Radiative Transfer in a Spherical Medium. J. Quant. Spectrosc. Radiat. Transf. 2001, 69, 49–59. [Google Scholar] [CrossRef]
- Optik, G. SphereSpectro 150H. Available online: https://www.gigahertz-optik.com/en-us/product/spherespectro%20150h/getpdf/ (accessed on 24 October 2022).
(mm−1) | (mm−1) | (mm−1) | (mm−1) | |||
---|---|---|---|---|---|---|
0.005 | 0.5 | 0.0008 | 0.2 | 0.01 | 0.02 | −0.9986 |
0.005 | 1.0 | 0.0003 | 0.06 | 0.01 | 0.01 | −0.9970 |
0.005 | 2.0 | 0.0001 | 0.02 | 0.02 | 0.008 | −0.9931 |
0.010 | 0.5 | 0.001 | 0.1 | 0.01 | 0.03 | −0.9986 |
0.010 | 1.0 | 0.0004 | 0.04 | 0.01 | 0.01 | −0.9983 |
0.010 | 2.0 | 0.0002 | 0.02 | 0.02 | 0.009 | −0.9971 |
0.020 | 0.5 | 0.001 | 0.07 | 0.02 | 0.03 | -0.9990 |
0.020 | 1.0 | 0.0007 | 0.04 | 0.02 | 0.02 | −0.9988 |
0.020 | 2.0 | 0.0003 | 0.01 | 0.02 | 0.009 | −0.9981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaney, G.; Sassaroli, A.; Fantini, S. Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette. Appl. Sci. 2022, 12, 10903. https://doi.org/10.3390/app122110903
Blaney G, Sassaroli A, Fantini S. Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette. Applied Sciences. 2022; 12(21):10903. https://doi.org/10.3390/app122110903
Chicago/Turabian StyleBlaney, Giles, Angelo Sassaroli, and Sergio Fantini. 2022. "Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette" Applied Sciences 12, no. 21: 10903. https://doi.org/10.3390/app122110903
APA StyleBlaney, G., Sassaroli, A., & Fantini, S. (2022). Method for Measuring Absolute Optical Properties of Turbid Samples in a Standard Cuvette. Applied Sciences, 12(21), 10903. https://doi.org/10.3390/app122110903