Design of a Low-Cost, Low-Sidelobe-Level, Differential-Fed SIW Slot Array Antenna with Zero Beam Squint
Abstract
:1. Introduction
2. Antenna Structure
2.1. Antenna Design
2.2. Differential-Fed 1 × 16 Linear Slot Array
2.3. Six-Way Unequal PD
2.4. Two-Way Hybrid WG-to-SIW E-Plane PD
2.5. Performance Enhancement
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeoh, Y.-S.; Min, K.-S. Characteristics of 6 × 26 slotted waveguide array antenna for wave monitoring radar system. J. Electromagn. Eng. Sci. 2021, 21, 439–447. [Google Scholar] [CrossRef]
- Trinh-Van, S.; Song, S.C.; Seo, S.H.; Hwang, K.C. Waveguide slot array antenna with a hybrid-phase feed for grating lobe reduction. Int. J. Antennas Propag. 2016, 53, 2662–2673. [Google Scholar] [CrossRef] [Green Version]
- Purnamirza, T.; Ibrahim, I.M.; Susanti, R.; Sutoyo; Mylyono; Radiles, H.; Rahmi, D. Cutting technique for constructing small radial line slot array antennas. J. Electromagn. Eng. Sci. 2021, 21, 35–43. [Google Scholar] [CrossRef]
- Yu, T.; Lee, H.; Park, S.-J.; Nam, S. A uniform heating technique for cavity in volatile organic sompound (VOC) removal system using slotted waveguide array. J. Electromagn. Eng. Sci. 2021, 21, 126–133. [Google Scholar] [CrossRef]
- Rengarajan, S.R.; Shaw, G.M. Accurate characterization of coupling junctions in waveguide-fed planar slot arrays. IEEE Trans. Microw. Theory Tech. 1994, 42, 2239–2248. [Google Scholar] [CrossRef]
- Casula, G.A.; Mazzarella, G. A direct computation of the frequency response of planar waveguide slot arrays. IEEE Trans. Antennas Propag. 2004, 52, 1909–1912. [Google Scholar] [CrossRef]
- Elliott, R.; O’Loughlin, W. The design of slot arrays including internal mutual coupling. IEEE Trans. Antennas Propag. 1986, 34, 1149–1154. [Google Scholar] [CrossRef]
- Iftikhar, A.; Shafique, M.F.; Farooq, U.; Khan, M.S.; Asif, S.M.; Fida, A.; Ijaz, B.; Rafique, M.N.; Mughal, M.J.; Ur-rehman, M. Planar SIW leaky wave antenna with wlectronically reconfigurable E- and H-plane scanning. IEEE Access 2019, 7, 171206–171213. [Google Scholar] [CrossRef]
- Hong, S.-J.; Lee, M.-P.; Kim, S.; Lim, J.-S.; Kim, D.-W. A Ku-band low-loss traveling-wave power divider using a hollow substrate integrated waveguide and tts microstrip transition. J. Electromagn. Eng. Sci. 2020, 20, 131–138. [Google Scholar] [CrossRef]
- Xu, F.; Wu, K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 2005, 53, 66–73. [Google Scholar]
- Lim, J.-H.; Lee, J.W.; Lee, T.-K.; Lee, H.-C.; Lee, S.-G.; Ryu, S.-B.; Yoon, S.-S. Performance evaluation of a modified SweepSAR mode for quad-pol application in SAR systems. J. Electromagn. Eng. Sci. 2020, 20, 199–206. [Google Scholar] [CrossRef]
- Xu, J.F.; Hong, W.; Chen, P.; Wu, K. Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas. IET Microw. Antennas Propag. 2009, 3, 790–797. [Google Scholar] [CrossRef]
- Yang, H.; Montisci, G.; Jin, Z.; Liu, Y.; He, X.; Mazzarella, G. Improved design of low sidelobe substrate integrated waveguide longitudinal slot array. IEEE Antennas Wireless Propag. Lett. 2015, 14, 237–240. [Google Scholar] [CrossRef]
- Dewantari, A.; Kim, J.; Scherbatko, I.; Ka, M.H. A sidelobe level reduction method for mm-Wave substrate integrated waveguide slot array antenna. IEEE Antennas Wireless Propag. Lett. 2019, 18, 1557–1561. [Google Scholar] [CrossRef]
- Park, S.; Tsunemitsu, Y.; Hirokawa, J.; Ando, M. Center feed single layer slotted waveguide array. IEEE Trans. Antennas Propag. 2006, 54, 1474–1480. [Google Scholar] [CrossRef]
- Kim, D.; Nam, S. Excitation control method for a low sidelobe SIW series slot array antenna with 45∘ linear polarization. IEEE Trans. Antennas Propag. 2013, 61, 5807–5812. [Google Scholar] [CrossRef]
- Ma, W.; Cao, W.; Wang, C.; Shi, S.; Zhang, B. Planar high-gain millimeter-wave slotted SIW cavity antenna array with low sidelobe and grating lobe levels. Int. J. Antennas Propag. 2022, 2022, 8431611. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Z.N.; Qing, X. CPW center-fed single-layer SIW slot antenna array for automotive radars. IEEE Trans. Antennas Propag. 2014, 62, 4528–4536. [Google Scholar] [CrossRef]
- Li, T.; Meng, H.; Dou, W. The analysis of broadband slotted antenna array. In Proceedings of the 2nd Asia-Pacific Conference on Antennas and Propagation, Xi’an, China, 5–7 August 2013; pp. 15–16. [Google Scholar]
- Tyagi, Y.; Mevada, P.; Chakrabarty, S.; Jyoti, R. High-efficiency broadband slotted waveguide array antenna. IET Microw. Antennas Propag. 2017, 11, 1401–1408. [Google Scholar] [CrossRef]
- Mohamed, I.; Sebak, A. Broadband transition of substrate-integrated waveguide-to-air-filled rectangular waveguide. IEEE Microw. Wireless Compon. Lett. 2018, 28, 966–968. [Google Scholar] [CrossRef]
Port No. | S-Parameters (dB/Linear) | Normalized S-Parameters | Taylor Weight (−30 dB SLL) |
---|---|---|---|
Port 2, 7 | −14.66/0.18 | 0.33 | 0.32 |
Port 3, 6 | −8.41/0.38 | 0.69 | 0.69 |
Port 4, 5 | −5.18/0.55 | 1.00 | 1.00 |
Ref. | Element Number | (GHz) | Feeding Mechanism | Imp. BW (%) | Peak Gain (dBic) | Peak SLL (dB) | Size () |
---|---|---|---|---|---|---|---|
[12] | 16 × 16 | 10 | End feed | 2.70 | 24.5 | −31.3 dB (E-plane) | 9×8.67 |
−30.3 dB (H-plane) | |||||||
[13] | 10 × 10 | 10 | End feed | 2.40 | 22 | −32.3 dB (E-plane) | 7×5.67 |
−33.8 dB (H-plane) | |||||||
[17] | 4 × 16 | 27.5 | Center feed | 2.18 | 21.4 | −17.9 dB (E-plane) | 10.3×5.7 |
−19.1 dB (H-plane) | |||||||
[18] | 4 × 32 | 24 | Center feed | 1.71 | 22.8 | −13.5 dB (E-plane) | 15.6×3.2 |
−21.0 dB (H-plane) | |||||||
Proposed | 6 × 16 | 10 | Differential feed | 7.15 | 21.92 | −29.1 dB (E-plane) | 14×4.83 |
Design | −29.4 dB (H-plane) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, T.V.; Trinh-Van, S.; Lee, K.-Y.; Yang, Y.; Hwang, K.C. Design of a Low-Cost, Low-Sidelobe-Level, Differential-Fed SIW Slot Array Antenna with Zero Beam Squint. Appl. Sci. 2022, 12, 10826. https://doi.org/10.3390/app122110826
Trinh TV, Trinh-Van S, Lee K-Y, Yang Y, Hwang KC. Design of a Low-Cost, Low-Sidelobe-Level, Differential-Fed SIW Slot Array Antenna with Zero Beam Squint. Applied Sciences. 2022; 12(21):10826. https://doi.org/10.3390/app122110826
Chicago/Turabian StyleTrinh, Thai Van, Son Trinh-Van, Kang-Yoon Lee, Youngoo Yang, and Keum Cheol Hwang. 2022. "Design of a Low-Cost, Low-Sidelobe-Level, Differential-Fed SIW Slot Array Antenna with Zero Beam Squint" Applied Sciences 12, no. 21: 10826. https://doi.org/10.3390/app122110826
APA StyleTrinh, T. V., Trinh-Van, S., Lee, K.-Y., Yang, Y., & Hwang, K. C. (2022). Design of a Low-Cost, Low-Sidelobe-Level, Differential-Fed SIW Slot Array Antenna with Zero Beam Squint. Applied Sciences, 12(21), 10826. https://doi.org/10.3390/app122110826