Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules
Abstract
1. Introduction
2. Experimental
2.1. Apparatus
2.2. Chemicals and Materials
2.3. Preparation of Standard and Sample Solutions
2.3.1. Standard Solutions
2.3.2. Capsules Sample Solutions
2.4. Recommended Procedures
2.4.1. MW-SPM
2.4.2. HPLC-FD
3. Results and Discussion
3.1. Development of MW-SPM
3.1.1. Strategy for Method Development and Its Design
3.1.2. UV-Visible Absorption Spectra and Gap Band Energy
3.1.3. Optimization of Reaction Conditions
3.1.4. Molar Ratios and Mechanisms of the Reactions
3.2. Development of HPLC-FD
3.2.1. Background and Strategy for Method Development
3.2.2. Optimization of Chromatographic Analysis Conditions
3.2.3. Selectivity and Chromatographic Parameters
3.3. Validation of MW-SPM and HPLC-FD Methods
3.3.1. Linear Range and Sensitivity
3.3.2. Precision and Accuracy
3.3.3. Robustness and Ruggedness
3.4. Application of MW-SPM and HPLC-FD to the Analysis of Capsules
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Report—12 September 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 26 June 2022).
- Bertino, J.R.; Hait, W. Principles of Cancer Therapy. In Textbook of Medicine, 22nd ed.; Golden, L., Ausiello, D., Eds.; WB Saunders: Saunders, PA, USA, 2004; pp. 1137–1150. [Google Scholar]
- Whittaker, S.; Marais, R.; Zhu, A. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010, 29, 4989–5005. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, E.; Brattain, M.G.; Chowdhury, S. Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell. Signal. 2013, 25, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Bradshaw, I.R.A.; Dennis, E.A. (Eds.) Phosphoinositide 3-Kinases. In Handbook of Cell Signaling; Academic Press: Cambridge, MA, USA, 2003; pp. 135–141. [Google Scholar]
- Malumbres, M. Cyclin-dependent kinases. Genome Biol. 2014, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cole, P.A. Catalytic mechanisms and regulation of protein kinases. Methods Enzymol. 2014, 548, 1–21. [Google Scholar]
- Drake, J.M.; Lee, J.K.; Witte, O.N. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell Biol. 2014, 34, 1722–1732. [Google Scholar] [CrossRef]
- Knösel, T.; Kampmann, E.; Kirchner, T.; Altendorf-Hofmann, A. Tyrosine kinases in soft tissue tumors. Pathologe 2014, 35, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Winkler, G.C.; Barle, E.L.; Galati, G.; Kluwe, W.M. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul. Toxicol. Pharmacol. 2014, 70, 46–53. [Google Scholar] [CrossRef]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.-S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef]
- Drugbank. Duvelisib. Available online: https://go.drugbank.com/drugs/DB11952 (accessed on 26 June 2022).
- Roskoski, R., Jr. Properties of FDA-approved small molecule phosphatidylinositol 3-kinase inhibitors prescribed for the treatment of malignancies. Pharmacol. Res. 2021, 168, 105579. [Google Scholar] [CrossRef]
- Blair, H.A. Duvelisib: First global approval. Drugs 2018, 78, 1847–1853. [Google Scholar] [CrossRef]
- Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood 2018, 131, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Drugs.com. Duvelisib. Available online: https://www.drugs.com/monograph/duvelisib.html (accessed on 26 June 2022).
- Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med. 2015, 3, 135. [Google Scholar] [PubMed]
- Raje, N.; Kumar, S.; Hideshima, T.; Roccaro, A.; Ishitsuka, K.; Yasui, H.; Shiraishi, N.; Chauhan, D.; Munshi, N.C.; Green, S.R.; et al. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 2005, 106, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Srujani, C.H.; Annapurna, P.; Nataraj, K.S.; Pawar, K.M.A. Analytlcal quality by design approach in RP-HPLC method development and validation for the estimation of duvelisib. Asian J. Pharm. Clin. Res. 2021, 14, 99–108. [Google Scholar]
- Siddesh, A.; Sriram, D.; Zakkula, A.; Kumar, R.; Dittakavi, S.; Zainuddin, M.; Trivedi, R.K.; Mullangi, R. Validated HPLC-UV method for simultaneous quantification of phosphatidylinositol 3-kinase inhibitors, copanlisib, duvelisib and idelalisib, in rat plasma: Application to a pharmacokinetic study in rats. Biomed. Chromatogr. 2021, 35, e5015. [Google Scholar] [CrossRef]
- Nigade, P.B.; Gundu, J.; Pai, K.S.; Nemmani, K.V.S. Prediction of tissue-to-plasma ratios of basic compounds in mice. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 835–847. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, S.; Zhu, H.; Du, X.; Xu, R.A. Development of a novel and quick UPLC-MS/MS method for the pharmacokinetic analysis of duvelisib in beagle dogs. J. Pharm. Biomed. Anal. 2020, 187, 113355. [Google Scholar] [CrossRef]
- Sayed, A.Y.; Khalil, N.Y.; Almomen, A.; Alzoman, N.Z.; Almehizia, A.A.; Darwish, I.A. A highly sensitive nonextraction-assisted HPLC method with fluorescence detection for quantification of duvelisib in plasma samples and its application to pharmacokinetic study in rats. Drug Des. Dev. Ther. 2021, 15, 2667–2677. [Google Scholar] [CrossRef]
- Vita, M.; Meurling, L.; Pettersson, T.; Cruz-Sidén, M.; Sidén, A.; Hassan, M. Analysis of roscovitine using novel high performance liquid chromatography and UV-detection method: Pharmacokinetics of roscovitine in rat. J. Pharm. Biomed. Anal. 2004, 34, 425–431. [Google Scholar] [CrossRef]
- Vitaa, M.; Skansenb, P.; Hassana, M.; Abdel-Rehim, M. Development and validation of a liquid chromatography and tandem mass spectrometry method for determination of roscovitine in plasma and urine samples utilizing on-line sample preparation. J. Chromatogr. B 2005, 817, 303–307. [Google Scholar] [CrossRef]
- Darwish, I.A.; Almehizia, A.A.; Sayed, A.Y.; Khalil, N.Y.; Alzoman, N.Z.; Darwish, H.W. Synthesis, spectroscopic and computational studies on hydrogen bonded charge transfer complex of duvelisib with chloranilic acid: Application to development of novel 96-microwell spectrophotometric assay. Spectrochim. Acta A 2021, 264, 120287. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Liao, M.; Wang, B.; Zhang, C. Determination of roscovitine enantiomeric purity by HPLC on chiral stationary phase. Chromatographia 2016, 79, 641–646. [Google Scholar] [CrossRef]
- Orság, P.; Fojt, L.H.L.; Coufal, J.; Brázda, V.; Fojta, M. Voltammetric behavior of a candidate anticancer drug roscovitine at carbon electrodes in aqueous buffers and a cell culture medium. Mon. Chem.—Chem. Mon. 2019, 150, 461–467. [Google Scholar] [CrossRef]
- Darwish, I.A.; Darwish, H.W.; Khalil, N.Y.; Sayed, A.Y. Experimental and computational evaluation of chloranilic acid as a universal chromogenic reagent for the development of a novel 96-microwell spectrophotometric assay for tyrosine kinase inhibitors. Molecules 2021, 26, 744. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.W. High Throughput Analysis in the Pharmaceutical Industry; CRC/Taylor & Francis: Portland, OR, USA, 2009; pp. 1–72. [Google Scholar]
- Görög, S. Ultraviolet-Visible Spectrophotometry in Pharmaceutical Analysis; CRC Press: New York, NY, USA, 2018; pp. 1–504. [Google Scholar]
- Darwish, I.A. Analytical study for the charge transfer complexes of losartan potassium. Anal. Chim. Acta 2005, 549, 212–220. [Google Scholar] [CrossRef]
- Darwish, I.A.; Refaat, I.H. Spectrophotometric analysis of selective serotonin reuptake inhibitors based on formation of charge-transfer complexes with tetracyanoquinondimethane and chloranilic acid. J. AOAC Int. 2006, 89, 326–333. [Google Scholar] [CrossRef] [PubMed]
- El-Bagary, R.I.; Elkady, E.F.; Ayoub, B.M. Spectrophotometric methods based on charge transfer complexation reactions for the determination of saxagliptin in bulk and pharmaceutical preparation. Int. J. Biomed. Sci. 2012, 8, 204–208. [Google Scholar] [PubMed]
- Kalyanaramu, B.; Rupakumari, G.; Ramarao, K.; Raghubabu, K. Development of new visible spectrophotometric methods for quantitative determination of sumatriptan succinate based on charge-transfer complex formation. Int. J. Pharm. Pharm. Sci. Res. 2011, 1, 47–51. [Google Scholar]
- Fidler, A.T.; Baker, E.L.; Letz, R.E. Neurobehavioural effects of occupational exposure to organic solvents among construction painters. Br. J. Ind. Med. 1987, 44, 292–308. [Google Scholar] [CrossRef]
- Wennborg, H.; Bonde, J.P.; Stenbeck, M.; Olsen, J. Adverse reproduction outcomes among employee in biomedical research laboratories. Scand. J. Work Environ. Health 2002, 28, 5–11. [Google Scholar] [CrossRef]
- Lindbohm, M.L.; Taskinen, H.T.; Sallman, M.; Hemminki, K. Spontaneous abortions among women exposed to organic solvents. Am. J. Ind. Med. 2007, 17, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, P.; Hilt, B.; Svendsen, K.; Grimsrud, T.K. Incidence of lymphohaematopoietic cancer at university laboratory: A cluster investigation. Eur. J. Epidemiol. 2008, 23, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Darwish, I.A.; Mahmoud, A.M.; Al-Majed, A.A. A novel analytical approach for reducing the consumption of organic solvents in the charge transfer-based spectrophotometric analysis: Application in the analysis of certain antihypertensive drugs. Acta Pharm. 2010, 60, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Alzoman, N.Z.; Sultan, M.A.; Maher, H.M.; Alshehri, M.M.; Wani, T.A.; Darwish, I.A. Analytical study for the charge-transfer complexes of rosuvastatin calcium with π-acceptors. Molecules 2013, 18, 7711–7725. [Google Scholar] [CrossRef]
- Darwish, I.A.; Wani, T.A.; Alqarni, M.A.; Ahamad, S.R. Microwell-based spectrophotometric method for determination of azithromycin in its pharmaceutical formulations via charge transfer reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Lat. Am. J. Pharm. 2014, 33, 587–594. [Google Scholar]
- Khalil, N.Y.; Wani, T.A.; Darwish, I.A.; Assiri, I.S. Charge-transfer reaction of cediranib with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone: Spectrophotometric investigation and use in development of microwell assay for cediranib. Trop. J. Pharm. Res. 2015, 14, 1667–1672. [Google Scholar] [CrossRef]
- Darwish, I.A.; Khalil, N.Y.; Alsaif, N.A.; Herqash, R.N.; Sayed, A.Y.A.; Abdel-Rahman, H.M. Charge-transfer complex of linifanib with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone: Synthesis, spectroscopic characterization, computational molecular modelling and application in the development of novel 96-microwell spectrophotometric assay. Drug Des. Dev. Ther. 2021, 15, 1167–1180. [Google Scholar] [CrossRef]
- Karipcin, F.; Dede, B.; Caglar, Y.; Hür, D.; Ilican, S.; Caglar, M.; Şahin, Y. A new dioxime ligand and its trinuclear copper (II) complex: Synthesis, characterization and optical properties. Opt. Commun. 2007, 272, 131–137. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principle of Instrumental Analysis, 7th ed.; WB Saunders: Saunders, PA, USA, 2014; pp. 362–378. [Google Scholar]
- The International Council for Harmonization (ICH). Q2(R1) on Validation of Analytical Procedure; ICH: Geneva, Switzerland, 2022. [Google Scholar]
Condition | Studied Range | Optimum Value a |
---|---|---|
DDQ conc. (%, w/v) | 0.125–0.8 | 0.5 |
Solvent | Different b | Methanol |
Reaction time (min) | 0–30 | 5 |
Temperature (°C) | 25–50 | 25 |
λmax (nm) | 400–800 | 460 c |
Parameter | Value | |
---|---|---|
DUV | SEL | |
Retention time (min) | 3.25 | 4.20 |
Retention factor (k′) | 1.196 | 1.857 |
Separation factor (α) | 1.55 | 1.55 |
Resolution factor (Rs) | 2.64 | 2.64 |
Peak asymmetry factor | 1 | 1 |
Number of theoretical plates (N) per meter | 8002 | 8939 |
Parameter | Value for MW-SPM | Value for HPLC-FD | ||
---|---|---|---|---|
DUV | SEL | DUV | SEL | |
Linear range a | 14.52–200 | 10.46–200 | 0.12–3.2 | 0.15–3.2 |
Intercept | 0.0018 | 0.0158 | 0.1751 | 0.1384 |
Standard deviation of intercept | 7.11 × 10−3 | 9.73 × 10−3 | 0.0834 | 0.1056 |
Slope | 0.0049 | 0.0093 | 0.9173 | 0.6968 |
Standard deviation of slope | 5.466 × 10−6 | 4.389 × 10−5 | 0.0075 | 0.0094 |
Correlation coefficient | 0.9997 | 0.9996 | 0.9998 | 0.9997 |
LOD a | 4.4 | 3.17 | 0.03 | 0.05 |
LOQ a | 14.52 | 10.46 | 0.12 | 0.15 |
Taken Conc. a | Relative Standard Deviation (%) b | Recovery (% ± SD) a | |
---|---|---|---|
Intra-Assay, n = 3 | Inter-Assay, n = 3 | ||
MW-SPM | |||
DUV | |||
20 | 1.29 | 2.23 | 100.2 ± 1.8 |
100 | 1.02 | 1.82 | 101.4 ± 2.1 |
160 | 1.62 | 2.41 | 98.5 ± 1.8 |
SEL | |||
20 | 1.82 | 2.14 | 100.2 ± 2.2 |
100 | 1.46 | 2.05 | 99.4 ± 1.9 |
160 | 2.01 | 2.27 | 102.5 ± 2.4 |
HPLC-FD | |||
DUV | |||
0.5 | 1.24 | 1.41 | 101.4 ± 1.2 |
1.5 | 0.89 | 1.22 | 100.2 ± 1.5 |
3.0 | 0.98 | 1.54 | 99.8 ± 1.2 |
SEL | |||
0.5 | 1.32 | 1.58 | 101.4 ± 1.4 |
1.5 | 1.04 | 1.04 | 98.8 ± 1.5 |
3.0 | 1.52 | 1.72 | 100.2 ± 1.8 |
Nominated Conc. a | Recovery (% ± SD) b | |
---|---|---|
Copiktra Capsules (25 mg DUV) | SEL Capsules (LM) c (100 mg SEL) | |
MW-SPM | ||
25 | 101.2 ± 1.2 | 102.2 ± 1.3 |
50 | 100.4 ± 1.4 | 100.1 ± 1.6 |
100 | 99.5 ± 1.8 | 99.8 ± 1.2 |
150 | 97.9 ± 1.2 | 101.4 ± 1.1 |
Mean | 99.8 ± 1.4 | 100.9 ± 1.1 |
HPLC-FD | ||
0.2 | 98.5 ± 1.1 | 100.1 ± 1.5 |
0.5 | 100.2 ± 1.2 | 98.5 ± 1.2 |
1.5 | 99.4 ± 1.5 | 98.8 ± 0.9 |
3.0 | 99.6 ± 0.8 | 99.7 ± 1.4 |
Mean | 99.4 ± 0.7 | 99.2 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljohar, H.I.; Alghamdi, A.A.; Khalil, N.Y.; Darwish, H.W.; Al-Salahi, R.; Darwish, I.A. Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules. Appl. Sci. 2022, 12, 10624. https://doi.org/10.3390/app122010624
Aljohar HI, Alghamdi AA, Khalil NY, Darwish HW, Al-Salahi R, Darwish IA. Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules. Applied Sciences. 2022; 12(20):10624. https://doi.org/10.3390/app122010624
Chicago/Turabian StyleAljohar, Haya I., Abdulmajeed A. Alghamdi, Nasr Y. Khalil, Hany W. Darwish, Rashad Al-Salahi, and Ibrahim A. Darwish. 2022. "Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules" Applied Sciences 12, no. 20: 10624. https://doi.org/10.3390/app122010624
APA StyleAljohar, H. I., Alghamdi, A. A., Khalil, N. Y., Darwish, H. W., Al-Salahi, R., & Darwish, I. A. (2022). Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules. Applied Sciences, 12(20), 10624. https://doi.org/10.3390/app122010624