# Freedom in Osteoarthritis of the Knee

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Andriacchi, T.P.; Griffin, T.M.; Loeser, R.F.; Chu, C.R.; Roos, E.M.; Hawker, G.A.; Erhart-Hledik, J.C.; Fischer, A.G. Bridging Disciplines as a pathway to Finding New Solutions for Osteoarthritis a collaborative program presented at the 2019 Orthopaedic Research Society and the Osteoarthritis Research Society International. Osteoarthr. Cartil. Open
**2020**, 2, 100026. [Google Scholar] [CrossRef] - Shull, P.B.; Silder, A.; Shultz, R.; Dragoo, J.L.; Besier, T.; Delp, S.L.; Cutkosky, M.R. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J. Orthop. Res.
**2013**, 31, 1020–1025. [Google Scholar] [CrossRef] [PubMed] - Dzialo, C.M.; Mannisi, M.; Halonen, K.S.; de Zee, M.; Woodburn, J.; Andersen, M.S. Gait alteration strategies for knee osteoarthritis: A comparison of joint loading via generic and patient-specific musculoskeletal model scaling techniques. Int. Biomech.
**2019**, 6, 54–65. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res.
**2006**, 24, 1983–1990. [Google Scholar] [CrossRef] [PubMed] - Gibson, J.J. The Ecological Approach to Visual Perception; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1986. [Google Scholar]
- Kim, W.; Veloso, A.P.; Araújo, D.; Vleck, V.; João, F. An informational framework to predict reaction of constraints using a reciprocally connected knee model. Comput. Methods Biomech. Biomed. Eng.
**2015**, 18, 78–89. [Google Scholar] [CrossRef] [PubMed] - Kim, W.; Veloso, A.P.; Vleck, V.E.; Andrade, C.; Kohles, S.S. The Stationary Configuration of the Knee. J. Am. Podiatr. Med. Assoc.
**2013**, 103, 126–135. [Google Scholar] [CrossRef] [PubMed] - Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lanczos, C. The Variational Principles of Mechanics; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Phillips, J. Freedom in Machinery: Volume 1, Introducing Screw Theory; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Kim, W.; Kohles, S. A reciprocal connection factor for assessing knee-joint function. Comput. Methods Biomech. Biomed. Eng.
**2012**, 15, 911–917. [Google Scholar] [CrossRef] [PubMed] - Hunt, K.H. Kinematic Geometry of Mechanism; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Kim, W.; Araujo, D.; Kohles, S.S.; Kim, S.-G.; Sanchez, H.H.A. Affordance-Based Surgical Design Methods Considering Biomechanical Artifacts. Ecol. Psychol.
**2021**, 33, 57–71. [Google Scholar] [CrossRef] - Conconi, M.; Sancisi, N.; Castelli, V.P. The Geometrical Arrangement of Knee Constraints That Makes Natural Motion Possible: Theoretical and Experimental Analysis. J. Biomech. Eng.
**2019**, 141, 051001. [Google Scholar] [CrossRef] [PubMed] - Levin, S.M. The Tensegrity-Truss as a Model for Spine Mechanics: Biotensegrity. J. Mech. Med. Biol.
**2002**, 2, 375–388. [Google Scholar] [CrossRef] - Phillips, J. Freedom in Machinery: Volume 2, Screw Theory Exemplified; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ball, R. A Treatise on the Theory of Screws; Cambridge University Press: Cambridge, UK, 1900. [Google Scholar]
- Kim, W.; Veloso, A.P.; Araújo, D.; Kohles, S.S. Novel computational approaches characterizing knee physiotherapy. J. Comput. Des. Eng.
**2014**, 1, 55–66. [Google Scholar] [CrossRef] [Green Version] - Wilson, D.; Feikes, J.; O’Connor, J. Ligaments and articular contact guide passive knee flexion. J. Biomech.
**1998**, 31, 1127–1136. [Google Scholar] [CrossRef] - Kim, W.; Espanha, M.M.; Veloso, A.; Araújo, D.; João, F.; Carrão, L.; Kohles, S.S. An Informational Algorithm as the Basis for Perception-Action Control of the Instantaneous Axes of the Knee. J. Nov. Physiother.
**2013**, 3, 127. [Google Scholar] [CrossRef] [PubMed] - Kim, W.; Kim, Y.H.; Veloso, A.P.; Kohles, S.S. Tracking knee joint functional axes through Tikhonov filtering and Plűcker coordinates. J. Nov. Physiother.
**2013**, 4, 11732. [Google Scholar] [CrossRef] [PubMed] - Konkar, R.; Cutkosky, M. Incremental Kinematic Analysis of Mechanisms. J. Mech. Des.
**1995**, 117, 589–596. [Google Scholar] [CrossRef] - Adams, J.D.; Whitney, D.E. Application of Screw Theory to Constraint Analysis of Mechanical Assemblies Joined by Features. J. Mech. Des.
**2001**, 123, 26–32. [Google Scholar] [CrossRef] - Kim, W. A Critical Study on the Duality of Functional Knee Axes and Foot Contact. Res. Trends Chall. Med. Sci.
**2021**, 8, 62–71. [Google Scholar] - Davidson, J.; Hunt, K. Robots and Screw Theory: Applications of Kinematics and Statics to Robotics; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Gibson, J.J. The Senses Considered as Perceptual Systems; Houghton: Boston, MA, USA, 1966. [Google Scholar]

**Figure 1.**(

**a**) The knee complex is represented by six constraints (${\$}_{1}^{\prime},{\$}_{2}^{\prime},{\$}_{3}^{\prime},{\$}_{4}^{\prime},{\$}_{5}^{\prime},{\$}_{6}^{\prime}$), which are collectively in equilibrium as indicated by their reciprocal conditions to the $ (at the ’ s). The original anatomic schematics and lines of action were published previously. (

**b**) The velocity vector of the center of gravity (when the body is slightly disturbed) can only be in a horizontal direction, perpendicular to the gravity force line.

$\mathbf{Constraint}\text{}\mathbf{Components}\text{}{\mathbf{\$}}_{\mathit{i}}^{\prime}$ | Force per Unit Applied Load | |
---|---|---|

The Knee Complex in Involution | The OA Knee | |

ACL | 0.30 | −2.10 × 10^{14} |

PCL | 0.15 | −1.05 × 10^{14} |

MCL | 0.02 | −1.38 × 10^{13} |

P_{1} | 0.57 | −4.02 × 10^{14}−5.48 × 10 ^{13} |

P_{2} | 0.08 | |

Q | N/A | 7.11 × 10^{14} |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, W.; Vela, E.A.
Freedom in Osteoarthritis of the Knee. *Appl. Sci.* **2022**, *12*, 839.
https://doi.org/10.3390/app12020839

**AMA Style**

Kim W, Vela EA.
Freedom in Osteoarthritis of the Knee. *Applied Sciences*. 2022; 12(2):839.
https://doi.org/10.3390/app12020839

**Chicago/Turabian Style**

Kim, Wangdo, and Emir A. Vela.
2022. "Freedom in Osteoarthritis of the Knee" *Applied Sciences* 12, no. 2: 839.
https://doi.org/10.3390/app12020839