A Comparative Study of the Application of Different Commercial Software for Topology Optimization
Abstract
:1. Introduction
2. Theory
3. Different TO Software Platforms
4. Case Studies and Methodology
5. Results
5.1. Optimization of a Bell Crank Lever
5.2. Optimization of a Pillow Bracket
5.3. Optimization of a Small Bridge
6. Comparison of the Used Commercial Software
6.1. SolidWorks
6.2. ANSYS
6.3. ABAQUS
7. Discussion
8. Conclusions
9. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bendsøe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications; Springer Science & Business Media: Berlin/Heildeberg, Germany, 2013; p. 370. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating Optimal Topologies in Structural Design Using a Homogenization Method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar] [CrossRef]
- Tyflopoulos, E.; Steinert, M. Topology and Parametric Optimization-Based Design Processes for Lightweight Structures. Appl. Sci. 2020, 10, 4496. [Google Scholar] [CrossRef]
- Leiva, J.P. Structural optimization methods and techniques to design efficient car bodies. In Proceedings of the International Automotive Body Congress, Troy, MI, USA, 9–10 November 2011. [Google Scholar]
- Wu, J.; Sigmund, O.; Groen, J.P. Topology optimization of multi-scale structures: A review. Struct. Multidiscip. Optim. 2021, 63, 1455–1480. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, P.; Biyikli, E.; Bai, J.; Robbins, J.; To, A. Efficient design optimization of variable-density cellular structures for additive manufacturing: Theory and experimental validation. Rapid Prototyp. J. 2017, 23, 660–677. [Google Scholar] [CrossRef]
- Tyflopoulos, E.; Steinert, M. A comparative study between traditional topology optimization and lattice optimization for additive manufacturing. Mater. Des. Processing Commun. 2020, 2, e128. [Google Scholar] [CrossRef] [Green Version]
- Krish, S. A practical generative design method. Comput. Aided Des. 2011, 43, 88–100. [Google Scholar] [CrossRef]
- Tyflopoulos, E.; Haskins, C.; Steinert, M. Topology-Optimization-Based Learning: A Powerful Teaching and Learning Framework under the Prism of the CDIO Approach. Educ. Sci. 2021, 11, 348. [Google Scholar] [CrossRef]
- Tyflopoulos, E.; Steinert, M. Messing with boundaries-quantifying the potential loss by pre-set parameters in topology optimization. Procedia CIRP 2019, 84, 979–985. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Zhou, M.; Rozvany, G.I.N. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 1991, 89, 309–336. [Google Scholar] [CrossRef]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Sigmund, O. A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Struct. Multidiscip. Optim. 2020, 62, 2211–2228. [Google Scholar] [CrossRef]
- Dhondt, G. CalculiX CrunchiX User’s Manual Version 2.12. Munich, Germany, accessed September, 2017; 21, 2017. [Google Scholar]
- Querin, O.; Young, V.; Steven, G.; Xie, Y. Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput. Methods Appl. Mech. Eng. 2000, 189, 559–573. [Google Scholar] [CrossRef]
- Allaire, G.; Karrman, A.; Michailidis, G. Scilab Code Manual. 2012. Available online: http://www.cmap.polytechnique.fr/~allaire/levelset/manual.pdf (accessed on 29 November 2021).
- Allaire, G.; Jouve, F.; Toader, A.-M. A level-set method for shape optimization. Comptes Rendus Math. 2002, 334, 1125–1130. [Google Scholar] [CrossRef]
- Bernardi, D.; Hecht, F.; Ohtsuka, K.; Pironneau, O. FREEFEM; Universite Pierre et Marie Curie: Paris, France, 1999. [Google Scholar]
- Gibson, T.H.; McRae, A.T.; Cotter, C.J.; Mitchell, L.; Ham, D.A. Firedrake. In Compatible Finite Element Methods for Geophysical Flows; Springer Nature: Basingstoke, UK, 2019; pp. 39–54. [Google Scholar] [CrossRef]
- 3DS. SOLIDWORKS. Available online: https://www.solidworks.com/ (accessed on 29 November 2021).
- 3DS. ABAQUS. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/ (accessed on 29 November 2021).
- Siemens. Siemens NX. Available online: https://www.plm.automation.siemens.com/global/en/products/nx/ (accessed on 29 November 2021).
- ALTAIR. OptiStruct. Available online: https://www.altair.com/optistruct/ (accessed on 29 November 2021).
- XIE_Technologies. Ameba. Available online: https://ameba.xieym.com/ (accessed on 29 November 2021).
- ANSYS. ANSYS Mechanical. Available online: https://www.ansys.com/products/structures/ansys-mechanical (accessed on 29 November 2021).
- Zhou, M.; Fleury, R.; Shyy, Y.-K.; Thomas, H.; Brennan, J. Progress in topology optimization with manufacturing constraints. In Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, USA, 4–6 September 2002; p. 5614. [Google Scholar]
- Schramm, U.; Zhou, M. Recent developments in the commercial implementation of topology optimization. In Proceedings of the IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Copenhagen, Denmark, 26–29 October 2005; pp. 239–248. [Google Scholar]
- Reddy Kantareddy, S.N.; Ferguson, I.; Frecker, M.; Simpson, T.W.; Dickman, C.J. Topology optimization software for additive manufacturing: A review of current capabilities and a real-world example. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; p. V02AT03A029. [Google Scholar]
- Christensen, P.W.; Klarbring, A. An Introduction to Structural Optimization; Springer Science & Business Media: Berlin/Heildeberg, Germany, 2008; Volume 153. [Google Scholar]
- Sigmund, O. On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 2011, 43, 589–596. [Google Scholar] [CrossRef]
- Zhou, M.; Pagaldipti, N.; Thomas, H.; Shyy, Y. An integrated approach to topology, sizing, and shape optimization. Struct. Multidiscip. Optim. 2004, 26, 308–317. [Google Scholar] [CrossRef]
- Xie, Y.M.; Steven, G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Eschenauer, H.A.; Kobelev, V.V.; Schumacher, A. Bubble Method for Topology and Shape Optimization of Structures. Struct. Optim. 1994, 8, 42–51. [Google Scholar] [CrossRef]
- Bourdin, B.; Chambolle, A. Design-dependent loads in topology optimization. Esaim Control. Optim. Calc. Var. 2003, 9, 19–48. [Google Scholar] [CrossRef]
- 3D_SYSTEMS. 3DXpert. Available online: https://www.3dsystems.com/software/3dxpert (accessed on 29 November 2021).
- Lopez, C.; Stroobants, J. Lattice topology optimization and additive manufacturing of a 316l control arm. In Proceedings of the Sim-AM 2019: II International Conference on Simulation for Additive Manufacturing, Pavia, Italy, 11–13 September 2019; pp. 186–192. [Google Scholar]
- Tyflopoulos, E.; Hofset, T.A.; Olsen, A.; Steinert, M. Simulation-based design: A case study in combining optimization methodologies for angle-ply composite laminates. Procedia CIRP 2021, 100, 607–612. [Google Scholar] [CrossRef]
- BETA. ACP OpDesign. Available online: https://www.beta-cae.com/opdesign.htm (accessed on 29 November 2021).
- Burbulla, F.; Hallquist, J.; L‘Eplattenier, P.; Stander, N.; Huang, Y.; Bala, S.; Del Pin, F. Modelling of Adhesively Bonded Joints in CAE-Models at Porsche–Look behind the Scenes. In Proceedings of the 11th European LS-DYNA Conference, Salzburg, Austria, 9–11 May 2017; p. 37. [Google Scholar]
- Allaire, G. Allaire_Scilab. Available online: http://www.cmap.polytechnique.fr/~allaire/levelset_en.html (accessed on 29 November 2021).
- Karrman, A.M.B.; Allaire, G. Structural optimization using sensitivity analysis and a level-set method, in Scilab and Matlab. Techn. Rep. Ec. Polytech. 2009, 194, 1–13. [Google Scholar]
- Zhou, M.; Shyy, Y.; Thomas, H. Checkerboard and minimum member size control in topology optimization. Struct. Multidiscip. Optim. 2001, 21, 152–158. [Google Scholar] [CrossRef]
- Kontovourkis, O.; Tryfonos, G.; Georgiou, C. Robotic additive manufacturing (RAM) with clay using topology optimization principles for toolpath planning: The example of a building element. Archit. Sci. Rev. 2020, 63, 105–118. [Google Scholar] [CrossRef]
- BETA. ANSA. Available online: https://www.beta-cae.com/ansa.htm (accessed on 29 November 2021).
- Salway, D.; Zeguer, T. Multi-disciplinary Topology Optimization for Vehicle Bonnet Design. In Proceedings of the 9th European LS-DYNA Conference, Manchester, UK, 2–4 June 2013. [Google Scholar]
- ANSYS. ANSYS Discovery. Available online: https://www.ansys.com/products/3d-design/ansys-discovery (accessed on 29 November 2021).
- Tyflopoulos, E.; Lien, M.; Steinert, M. Optimization of Brake Calipers Using Topology Optimization for Additive Manufacturing. Appl. Sci. 2021, 11, 1437. [Google Scholar] [CrossRef]
- Gunwant, D.; Misra, A. Topology Optimization of sheet metal brackets using ANSYS. MIT Int. J. Mech. Eng. 2012, 2, 120–126. [Google Scholar]
- Autodesk. Autodesk Fusion 360. Available online: https://www.autodesk.com/products/fusion-360/overview (accessed on 29 November 2021).
- Salaimanimagudam, M.P.; Suribabu, C.R.; Murali, G.; Abid, S.R. Impact response of hammerhead pier fibrous concrete beams designed with topology optimization. Period. Polytech. Civ. Eng. 2020, 64, 1244–1258. [Google Scholar] [CrossRef]
- Autodesk. Autodesk Inventor. Available online: https://www.autodesk.com/products/inventor/overview?term=1-YEAR&tab=subscription (accessed on 29 November 2021).
- Barnes, J.B.; Camisa, J.A. Additive Manufacturing for Oil and Gas-Potential of Topology Optimization for Offshore Applications. In Proceedings of the 29th International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019. [Google Scholar]
- Autodesk. Autodesk Netfabb. Available online: https://www.autodesk.com/products/netfabb/overview (accessed on 29 November 2021).
- Samarkin, A.; Samarkina, E.; Mikushev, V.; Plohov, I. Simulation of the strength properties of lattice structures, produced by the method of three-dimensional printing. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2188, p. 040004. [Google Scholar]
- Autodesk. Autodesk Within Medical. Available online: https://www.autodesk.eu/products/within-medical/overview?wcmmode=disabled (accessed on 29 November 2021).
- Panesar, A.; Abdi, M.; Hickman, D.; Ashcroft, I. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing. Addit. Manuf. 2018, 19, 81–94. [Google Scholar] [CrossRef]
- LMS_Samtech. BOSS-Quattro. Available online: https://www.lmsintl.com/samtech-boss-quattro (accessed on 29 November 2021).
- Santer, M.; Pellegrino, S. Topology optimization of adaptive compliant aircraft wing leading edge. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007; p. 1714. [Google Scholar]
- Fidesys. CAE Fidesys. Available online: https://cae-fidesys.com/products/desktop/?hl=en (accessed on 29 November 2021).
- Nikishkov, G.; Vershinin, A.; Nikishkov, Y. Mesh-independent equivalent domain integral method for J-integral evaluation. Adv. Eng. Softw. 2016, 100, 308–318. [Google Scholar] [CrossRef]
- FRIENDSHIP_SYSTEMS. CAESES. Available online: https://www.caeses.com/ (accessed on 29 November 2021).
- Harries, S.; Abt, C. CAESES—The HOLISHIP Platform for Process Integration and Design Optimization. In A Holistic Approach to Ship Design; Springer: Berlin/Heildeberg, Germany, 2019; pp. 247–293. [Google Scholar] [CrossRef]
- Dhondt, G.; Wittig, K. CalculiX. Available online: http://www.calculix.de/ (accessed on 29 November 2021).
- Löffelmann, F. Calculix/Beso. Available online: https://github.com/calculix/beso (accessed on 29 November 2021).
- Löffelmann, F. Failure Index Based Topology Optimization for Multiple Properties. In Proceedings of the 23rd International Conference on Engineering Mechanics, Svratka, Czech Republic, 15–18 May 2017; pp. 15–18. [Google Scholar]
- 3DS. CATIA. Available online: https://www.3ds.com/products-services/catia/ (accessed on 29 November 2021).
- Chang, J.W.; Lee, Y.S. Topology optimization of compressor bracket. J. Mech. Sci. Technol. 2008, 22, 1668–1676. [Google Scholar] [CrossRef]
- CES-Eckard_GmbH. CATOPO. Available online: http://ces-eckard.de/ (accessed on 29 November 2021).
- Faskhutdinov, R.; Dubrovskaya, A.; Dongauzer, K.; Maksimov, P.; Trufanov, N. Topology optimization of a gas-turbine engine part. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 177, p. 012077. [Google Scholar]
- COMSOL_Inc. COMSOL. Available online: https://www.comsol.com/ (accessed on 29 November 2021).
- Srinivas, V.; Ananthasuresh, G. Analysis and topology optimization of heat sinks with a phase-change material on COMSOL multiphysics™ platform. In Proceedings of the COMSOL Users Conference, Paris, France, 7 November 2006. [Google Scholar]
- Ptc. Creo. Available online: https://www.ptc.com/en/products/creo (accessed on 29 November 2021).
- Shilpa, K.; Subbarao, D.; SAI, P.S.T. Design Evaluation and Optimization of Helical Gears using CREO. Int. J. Sci. Eng. Technol. Res. 2015, 4, 3967–3970. [Google Scholar]
- Diabatix. Diabatix. Available online: https://www.diabatix.com/ (accessed on 29 November 2021).
- Cuypers, C.; Sanders, N.; Vantieghem, L. Cooling, Battery and Suspension System of the Umicore Eclipse. ATZextra Worldw. 2019, 24, 30–33. [Google Scholar] [CrossRef]
- BETA. Epilysis. Available online: https://www.beta-cae.com/epilysis.htm (accessed on 29 November 2021).
- Park, I.; Papadimitriou, D. Efficient Surrogate-Based NVH Optimization of a Full Vehicle Using FRF Based Substructuring. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 1429–1442. [Google Scholar] [CrossRef]
- DevDept. Eyeshot. Available online: https://www.devdept.com/eyeshot (accessed on 29 November 2021).
- Martini, G. CAD Aspects on Isogeometric Analysis and Hybrid Domains. Ph.D. Thesis, Alma Mater Studiorum Università di Bologna, Bologna, Italy, May 2016. [Google Scholar]
- König, O.; Wintermantel, M.; Zehnder, N.; Giger, M.; Roos, R.; Barandun, G.A.; Keller, D. FELyX. Available online: http://felyx.sourceforge.net/idea.html (accessed on 29 November 2021).
- Giger, M.; Ermanni, P. Evolutionary truss topology optimization using a graph-based parameterization concept. Struct. Multidiscip. Optim. 2006, 32, 313–326. [Google Scholar] [CrossRef] [Green Version]
- DDS. FEMTools. Available online: https://www.femtools.com/products/ftopt.htm (accessed on 29 November 2021).
- Shook, B.W.; Nizam, A.; Gong, Z.; Francis, A.M.; Mantooth, H.A. Multi-objective layout optimization for multi-chip power modules considering electrical parasitics and thermal performance. In Proceedings of the 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, UT, USA, 23–26 June 2013; pp. 1–4. [Google Scholar]
- Firedrake. Firedrake. Available online: https://www.firedrakeproject.org/ (accessed on 29 November 2021).
- Salazar De Troya, M.; Beck, V.A. Level Set Topology Optimization in Firedrake; Lawrence Livermore National Lab.(LLNL): Livermore, CA, USA, 2020. [Google Scholar]
- Lindemann, J.; Olsson, K.-G. ForcePAD. Available online: http://forcepad.sourceforge.net/ (accessed on 29 November 2021).
- Beger, A.-L.; Brezing, A.; Feldhusen, J. The potential of low cost topology optimization. In Proceedings of the 15th International Conference on Engineering and Product Design Education, Dublin, Ireland, 5–6 September 2013. [Google Scholar]
- Pironneau, O. FreeFEM. Available online: https://freefem.org/ (accessed on 29 November 2021).
- Zhan, Y.; Zhuang, C.; Xiong, Z.; Ding, H. Structural Topology Optimization Based on the Level Set Method and FreeFEM. China Mech. Eng. 2009, 20, 0-1292. [Google Scholar]
- VR&D. GENESIS. Available online: http://www.vrand.com/products/genesis/ (accessed on 29 November 2021).
- Leiva, J.P.; Wang, L.; Recek, S.; Watson, B.C. Automobile design using the GENESIS structural optimization program. In Proceedings of the Nafems Seminar: Advances in Optimization Tecnologies for Product Design, Chicago, IL, USA, 6–7 June 2017. [Google Scholar]
- Renard, Y.; Pommier, J. GetFEM++. Available online: https://getfem.org/index.html (accessed on 29 November 2021).
- Bluhm, G.L.; Sigmund, O.; Poulios, K. Internal contact modeling for finite strain topology optimization. Comput. Mech. 2021, 67, 1099–1114. [Google Scholar] [CrossRef]
- Rutten, D. Grasshopper. Available online: https://www.rhino3d.com/6/new/grasshopper/ (accessed on 29 November 2021).
- McNeel, R. Rhino. Available online: https://www.rhino3d.com/ (accessed on 29 November 2021).
- McNeel, R. Food4Rhino. Available online: https://www.food4rhino.com/en (accessed on 29 November 2021).
- Søndergaard, A.; Amir, O.; Knauss, M. Topology Optimization and Digital Assembly of Advanced Space-Frame Structures; Aarhus School of Architecture: Aarhus, Denmark, 2013. [Google Scholar]
- Engys. HELYX. Available online: https://engys.com/products/helyx (accessed on 29 November 2021).
- Agarwal, D.; Kapellos, C.; Robinson, T.; Armstrong, C. Using parametric effectiveness for efficient CAD-based adjoint optimization. Comput. Aided Des. Appl. 2019, 16, 703–719. [Google Scholar] [CrossRef]
- ALTAIR. Inspire. Available online: https://www.altair.com/resource/altair-inspire-accelerate-simulation-driven-design (accessed on 29 November 2021).
- Ferede, N. Topology Optimization of Automotive sheet metal part using Altair Inspire. Int. J. Eng. Manag. Sci. 2020, 5, 143–150. [Google Scholar] [CrossRef]
- LimitState_Ltd. LimitState:FORM. Available online: https://limitstate3d.com/limitstateform (accessed on 29 November 2021).
- He, L.; Gilbert, M.; Johnson, T.; Pritchard, T. Conceptual design of AM components using layout and geometry optimization. Comput. Math. Appl. 2019, 78, 2308–2324. [Google Scholar] [CrossRef]
- Metal, D. Live Parts. Available online: https://www.desktopmetal.com/products/live-parts (accessed on 29 November 2021).
- Simpson, T.W. Designing for Additive Manufacturing. In Additive Manufacturing; CRC Press: Boca Raton, FL, USA, 2019; pp. 233–268. [Google Scholar]
- DYNAmore. LS-DYNA. Available online: https://www.lsoptsupport.com/ (accessed on 29 November 2021).
- Roux, W. Topology Design using LS-TaSC™ Version 2 and LS-DYNA®; Livermore Software Technology Corporation: Livermore, CA, USA, 2011. [Google Scholar]
- Materialise. Materialise 3-Matic. Available online: https://www.materialise.com/en/software/3-matic (accessed on 29 November 2021).
- Klaus, M.; Holtzhausen, S.; Schöne, C.; Stelzer, R. Topology-Oriented Deformation of FE-Meshes in Iterative Reverse Engineering Processes. In Engineering Systems Design and Analysis; American Society of Mechanical Engineers: New York, NY, USA, 2012; Volume 44878, pp. 505–509. [Google Scholar]
- MathWorks. Matlab. Available online: https://www.mathworks.com/ (accessed on 29 November 2021).
- Ferrari, F.; Sigmund, O.; Guest, J.K. Topology optimization with linearized buckling criteria in 250 lines of Matlab. Struct. Multidiscip. Optim. 2021, 63, 3045–3066. [Google Scholar] [CrossRef]
- Andreasen, C.S.; Elingaard, M.O.; Aage, N. Level set topology and shape optimization by density methods using cut elements with length scale control. Struct. Multidiscip. Optim. 2020, 62, 685–707. [Google Scholar] [CrossRef]
- Kamardina, N.V.; Guseynov, R.M.; Danilov, I.K.; Konoplev, V.N.; Ivanov, K.A.; Zharko, A.S.; Polishchuk, G.M. Topological optimization of the “Earring” element. RUDN J. Eng. Res. 2020, 21, 20–26. [Google Scholar] [CrossRef]
- Huang, X.; Xie, M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- MFEM_Team. MFEM. Available online: https://mfem.org/ (accessed on 29 November 2021).
- Carstensen, C.; Liu, D. Nonconforming FEMs for an optimal design problem. SIAM J. Numer. Anal. 2015, 53, 874–894. [Google Scholar] [CrossRef] [Green Version]
- MIDAS. midasNFX. Available online: https://www.midasoft.com/mechanical/products/midasnfx (accessed on 29 November 2021).
- Sahithi, N.; Chandrasekhar, K. Isogeometric topology optimization of continuum structures using an evolutionary algorithm. J. Appl. Comput. Mech. 2019, 5, 414–440. [Google Scholar] [CrossRef]
- MoFEM_Team. MoFEM. Available online: http://mofem.eng.gla.ac.uk/mofem/html/ (accessed on 29 November 2021).
- Kaczmarczyk, Ł.; Ullah, Z.; Lewandowski, K.; Meng, X.; Zhou, X.-Y.; Athanasiadis, I.; Nguyen, H.; Chalons-Mouriesse, C.-A.; Richardson, E.J.; Miur, E. MoFEM: An open source, parallel finite element library. J. Open Source Softw. 2020, 5, 1441. [Google Scholar] [CrossRef]
- HEXAGON; MSC. MSC Apex. Available online: https://www.mscsoftware.com/product/msc-apex (accessed on 29 November 2021).
- Klippstein, H.; Duchting, A.; Reiher, T.; Hengsbach, F.; Menge, D.; Schmid, H.-J. Development, Production And Post-Processing Of A Topology Optimized Aircraft Bracket. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2019. [Google Scholar]
- HEXAGON; MSC. MSC Nastran. Available online: https://www.mscsoftware.com/product/msc-nastran (accessed on 29 November 2021).
- Bakhtiary, N.; Allinger, P.; Friedrich, M.; Mulfinger, F.; Sauter, J.; Müller, O.; Puchinger, M. A new approach for sizing, shape and topology optimization. SAE Trans. 1996, 745–761. [Google Scholar] [CrossRef] [Green Version]
- NTopology. nTopology. Available online: https://ntopology.com/ (accessed on 29 November 2021).
- Groen, J.; Thomsen, C.; Sigmund, O. Multi-scale topology optimization for stiffness and de-homogenization using implicit geometry modeling. Struct. Multidiscip. Optim. 2021, 1–16. [Google Scholar] [CrossRef]
- OpenCFD. OpenFOAM. Available online: https://www.openfoam.com/ (accessed on 29 November 2021).
- Othmer, C.; de Villiers, E.; Weller, H. Implementation of a continuous adjoint for topology optimization of ducted flows. In Proceedings of the 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, USA, 25–28 June 2007; p. 3947. [Google Scholar]
- M2DO. OpenLSTO. Available online: http://m2do.ucsd.edu/software/ (accessed on 29 November 2021).
- Hyun, J.; Kim, H.A. Transient level-set topology optimization of a planar acoustic lens working with short-duration pulse. J. Acoust. Soc. Am. 2021, 149, 3010–3026. [Google Scholar] [CrossRef]
- Gray, J.S.; Hwang, J.T.; Martins, J.R.; Moore, K.T.; Naylor, B.A. OpenMDAO. Available online: https://openmdao.org/ (accessed on 29 November 2021).
- Gray, J.S.; Hwang, J.T.; Martins, J.R.; Moore, K.T.; Naylor, B.A. OpenMDAO: An open-source framework for multidisciplinary design, analysis, and optimization. Struct. Multidiscip. Optim. 2019, 59, 1075–1104. [Google Scholar] [CrossRef]
- Quint_Corporation. OPTISHAPE-TS. Available online: https://www.quint.co.jp/eng/pro/ots/index.htm (accessed on 29 November 2021).
- Choi, J. An Analysis of Femoral Bone Remodeling Using Topology Optimization Method. J. Biomed. Eng. Res. 2005, 26, 365–372. [Google Scholar]
- Paramatters. Paramatters. Available online: https://paramatters.com/ (accessed on 29 November 2021).
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.-Y. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- SciArt. ParetoWorks. Available online: https://www.sciartsoft.com/pareto (accessed on 29 November 2021).
- Ali, M.H.; Yerbolat, G.; Amangeldi, S. Material optimization method in 3D printing. In Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018; pp. 365–368. [Google Scholar]
- HEXAGON; MSC. Patran. Available online: https://www.mscsoftware.com/product/patran (accessed on 29 November 2021).
- Shaari, M.; Rahman, M.; Noor, M.; Kadirgama, K.; Amirruddin, A. Design of connecting rod of internal combustion engine: A topology optimization approach. In Proceedings of the National Conference in Mechanical Engineering Research and Postgraduate Studies (2nd NCMER 2010), Pekan, Malaysia, 3–4 December 2010; pp. 3–4. [Google Scholar]
- INTES. PERMAS. Available online: https://www.intes.de/kategorie_permas/einfuehrung (accessed on 29 November 2021).
- Helfrich, R.; Schünemann, A. Topology Optimization of an Engine Bracket Under Harmonic Loads. In Proceedings of the SIA International Conference “Automotive NVH Comfort”, Le Mans, France, 13–14 October 2021; pp. 19–20. [Google Scholar]
- CAESS. ProTOp. Available online: https://www.caess.eu/ (accessed on 29 November 2021).
- Ramadani, R.; Belsak, A.; Kegl, M.; Predan, J.; Pehan, S. Topology optimization based design of lightweight and low vibration gear bodies. Int. J. Simul. Model. 2018, 17, 92–104. [Google Scholar] [CrossRef]
- PSF. Python. Available online: https://www.python.org/ (accessed on 29 November 2021).
- Zuo, Z.H.; Xie, Y.M. A simple and compact Python code for complex 3D topology optimization. Adv. Eng. Softw. 2015, 85, 1–11. [Google Scholar] [CrossRef]
- CSI. SAP2000. Available online: https://www.csiamerica.com/products/sap2000 (accessed on 29 November 2021).
- Lagaros, N.D.; Vasileiou, N.; Kazakis, G. AC# code for solving 3D topology optimization problems using SAP2000. Optim. Eng. 2019, 20, 1–35. [Google Scholar]
- Siemens. Simcenter Nastran/Femap. Available online: https://www.plm.automation.siemens.com/global/en/products/simcenter/femap.html (accessed on 29 November 2021).
- Păcurar, R.; Păcurar, A. Topology Optimization of an Airplane Component to Be Made by Selective Laser Melting Technology. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bach, Switzerland, 2015; Volume 808, pp. 181–186. [Google Scholar]
- Simright. Simright Toptimizer. Available online: https://www.simright.com/apps/simright-toptimizer (accessed on 29 November 2021).
- Siemens. Solid Edge. Available online: https://solidedge.siemens.com/en/ (accessed on 29 November 2021).
- Shanmugasundar, G.; Dharanidharan, M.; Vishwa, D.; Kumar, A.S. Design, analysis and topology optimization of connecting rod. Mater. Today Proc. 2021, 46, 3430–3438. [Google Scholar] [CrossRef]
- Lakshmi Srinivas, G.; Jaya Aadityaa, G.; Pratap Singh, S.; Javed, A. Energy efficiency enhancement of SCORBOT ER-4U manipulator using topology optimization method. Mech. Based Des. Struct. Mach. 2021, 1–20. [Google Scholar] [CrossRef]
- TOffeeAM. TOffeeAM. Available online: https://www.toffeeam.co.uk/ (accessed on 29 November 2021).
- Montomoli, F.; Antorkas, S.; Pietropaoli, M.; Gaymann, A.; Hammond, J.; Marioni, Y.F.; Isaksson, N.; Massini, M.; Vazquez-Diaz, R.; Adami, P. Towards digital design of gas turbines. J. Glob. Power Propuls. Soc. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Denk, M.; Prescott, D. ToOptix. Available online: https://github.com/Foxelmanian/ToOptixUpdate (accessed on 29 November 2021).
- Strömberg, N. TopoBox and MetaBox. Available online: https://www.fema.se/index.html (accessed on 29 November 2021).
- Strömberg, N. A Two-Variable Topology Optimization Approach for Simultaneously Macro Layout and Local Grading of Periodic Lattice Structures; Orebro University: Orebro, Sweden, 2020. [Google Scholar]
- TopOpt_group. TopOpt. Available online: https://www.topopt.mek.dtu.dk/?q=node/11 (accessed on 29 November 2021).
- Aage, N.; Nobel-Jørgensen, M.; Andreasen, C.S.; Sigmund, O. Interactive topology optimization on hand-held devices. Struct. Multidiscip. Optim. 2013, 47, 1–6. [Google Scholar] [CrossRef]
- OMEVA. Toptimiz3D. Available online: https://matematicas.uclm.es/omeva/?page_id=2104 (accessed on 29 November 2021).
- Aranda, E.; Bellido, J.C.; Donoso, A. Toptimiz3D: A topology optimization software using unstructured meshes. Adv. Eng. Softw. 2020, 148, 102875. [Google Scholar] [CrossRef]
- Hunter, W. ToPy—Topology Optimization with Python. Available online: https://github.com/williamhunter/topy (accessed on 29 November 2021).
- Sosnovik, I.; Oseledets, I. Neural networks for topology optimization. Russ. J. Numer. Anal. Math. Model. 2019, 34, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Trinitas_team. Trinitas. Available online: http://www.solid.iei.liu.se/Offered_services/Trinitas/index.html (accessed on 29 November 2021).
- Suresh, S.; Thore, C.-J.; Torstenfelt, B.; Klarbring, A. Topology optimization accounting for surface layer effects. Struct. Multidiscip. Optim. 2020, 62, 3009–3019. [Google Scholar] [CrossRef]
- Virtual.PYXIS. Virtual.PYXIS. Available online: https://virtualpyxis.com.br/ (accessed on 29 November 2021).
- Z88. Z88Arion. Available online: https://z88.de/ (accessed on 29 November 2021).
- Mukherjee, S.K. Product Design with Form, Strength, and Function for Undergraduate Product Design Students—A Case Study. In Design for Tomorrow; Springer: Berlin/Heildeberg, Germany, 2021; Volume 2, pp. 229–241. [Google Scholar] [CrossRef]
- Sowjanya, C.; Nagabhushana Rao, V.; Pavani Sri Kavya, B. Optimum Design and Analysis of Bell Crank Lever for an Automobile. In Advanced Manufacturing Systems and Innovative Product Design; Springer: Berlin/Heildeberg, Germany, 2021; pp. 189–208. [Google Scholar] [CrossRef]
Name (Company, Version) | Availability | Optimization Type: Method | Objective Functions (TO) | Constraints (TO) | Results (TO) | Representative Literature |
---|---|---|---|---|---|---|
Solidworks, 3DS [23] | Commercial/Available at student edition | Size: P Shape: P Topology: TO (SIMP) | Mass, stiffness, displacement | Design: dimensions, mass Supports and connections: fixtures, contacts, displacement, frequency Loads: structural loads, stress, FOS Manufacturing: preserved region, member size, mold (pull direction), symmetry (planar) | Optimized design: faceted geometry Plots: element density distribution, stress, displacement | Lakshmi Srinivas, Jaya Aadityaa, Pratap Singh and Javed [157] |
ANSYS Mechanical, ANSYS [28] | Commercial/Available at student edition | Size: P Shape: P, NP Topology: TO (SIMP, level set), lattice | Compliance, mass, volume | Design: dimensions, volume, mass, center of gravity, moment of inertia, lattices (size, type, strut thickness, density) Supports and connections: fixtures, contacts, displacement Loads: structural loads, reaction force, stress Manufacturing: preserved region, member size, mold (pull direction), extrusion, symmetry (planar, cyclic), overhang (angle, 3D building direction) | Optimized design: faceted geometry Plots: element density distribution | Gunwant and Misra [51] |
ABAQUS (Tosca) + Isight, 3DS [24] | Commercial/Available at student edition | Size: P Shape: P, NP, Topography Topology: TO (SIMP, RAMP) | Strain energy, volume, weight, displacement, rotation, frequency, reaction force, reaction moment, internal force, internal moment, center of gravity, moment of inertia | Design: dimensions, volume, weight, center of gravity, moment of inertia Supports and connections: fixtures, contacts, displacement Loads: structural loads, frequency, reaction force, reaction moment, internal force, internal moment, rotation Manufacturing: preserved region, member size, symmetry (planar, rotational, cyclic, point), mold (pull direction) | Optimized design: faceted geometry Plots: element density distribution, stresses, displacement, stress, strain, displacement | Tyflopoulos, Hofset, Olsen and Steinert [40] |
Software | Design Cycles | Optimization Time (sec) | Weight after TO (% of IW) | Weight after 3D Preparation (% of IW) | Max Von Mises Stress (MPa) | Min FOS | |
---|---|---|---|---|---|---|---|
Bell crank lever | Initial design | - | - | Initial weight (IW): 1.965 | - | 11.7 | 61.9 |
SolidWorks | 48/36 | 376/244 | 45.7/16.7 | 50.3/18.1 | 17.2/395.2 | 42.1/1.83 | |
ANSYS Mechanical | 20/61 | 345/1088 | 50.4/18.2 | 50.2/12.5 | 18.6/526.7 | 31.2/1.37 | |
ABAQUS | 45/57 | 2441/2929 | 42.5/12.6 | 50.2/11.7 | 17.4/487.5 | 41.6/1.48 | |
Pillow bracket | Initial design | - | - | Initial weight (IW): 0.785 | - | 31.3 | 23.1 |
SolidWorks | 22/30 | 83/123 | 47.8/15 | 50.4/15.3 | 29.0/348.4 | 25/2.1 | |
ANSYS Mechanical | 18/27 | 123/175 | 55.4/22.2 | 50.3/14.4 | 59.7/307.8 | 12.1/2.4 | |
ABAQUS | 21/59 | 413/1047 | 42.7/14.8 | 49.7/14.1 | 29.3/314 | 24.7/2.3 | |
Small bridge | Initial design | - | - | Initial weight (IW): 2274.1 | - | 157 | 4.6 |
SolidWorks | 34/37 | 270/325 | 49.7/19.7 | 49.8/21 | 80.8/571.9 | 9/1.3 | |
ANSYS Mechanical | 21/27 | 787/999 | 55.5/25.5 | 50/22 | 125.7/527.3 | 5.8/1.4 | |
ABAQUS | 32/48 | 1543/8117 | 43/26 | 49.9/27.8 | 152.0/414.2 | 4.8/1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyflopoulos, E.; Steinert, M. A Comparative Study of the Application of Different Commercial Software for Topology Optimization. Appl. Sci. 2022, 12, 611. https://doi.org/10.3390/app12020611
Tyflopoulos E, Steinert M. A Comparative Study of the Application of Different Commercial Software for Topology Optimization. Applied Sciences. 2022; 12(2):611. https://doi.org/10.3390/app12020611
Chicago/Turabian StyleTyflopoulos, Evangelos, and Martin Steinert. 2022. "A Comparative Study of the Application of Different Commercial Software for Topology Optimization" Applied Sciences 12, no. 2: 611. https://doi.org/10.3390/app12020611
APA StyleTyflopoulos, E., & Steinert, M. (2022). A Comparative Study of the Application of Different Commercial Software for Topology Optimization. Applied Sciences, 12(2), 611. https://doi.org/10.3390/app12020611