Structural Augmentation in Seismic Data for Fault Prediction
Abstract
:1. Introduction
2. Methods
2.1. Adding Virtual Folds
2.2. Adding Virtual Faults
2.2.1. Fault Displacement
2.2.2. Fault Surface
2.2.3. Fault Drag
3. Seismic Fault Detection Based on U-Net
3.1. Neural Network Architecture
3.2. Loss Function
3.3. Network Training
3.3.1. Network Training Based on Manual Interpretation Data
3.3.2. Network Training Based on Synthetic Data
3.3.3. Network Training Based on Transfer Learning
3.3.4. Network Training Based on Structural Data Augmentation
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Lyu, Y.; Wang, Q.; Fu, G.; Wang, Y.; Sun, Y.; Huo, Z.; Liu, J. Evaluations of oil and gas lateral migration across faults: A case study of Shigezhuang nose structure of Wen’an slope in Baxian sag, Jizhong depression, Bohai Bay Basin, East China. Pet. Explor. Dev. 2017, 44, 932–940. [Google Scholar] [CrossRef]
- Peng, J.; Wei, A.; Sun, Z.; Chen, X.; Zhao, D. Sinistral strike slip of the Zhangjiakou-Penglai Fault and its control on hydrocarbon accumulation in the northeast of Shaleitian Bulge, Bohai Bay Basin, East China. Pet. Explor. Dev. 2018, 45, 215–226. [Google Scholar] [CrossRef]
- Li, C.; Xu, G.; Xu, F.; Yu, Q.; Liang, H. A model for faults to link the Neogene reservoirs to the Paleogene organic-rich sediments in low-relief regions of the south Bohai Sea, China. J. Pet. Sci. Eng. 2021, 200, 108360. [Google Scholar] [CrossRef]
- Korneva, I.; Tondi, E.; Agosta, F.; Rustichelli, A.; Spina, V.; Bitonte, R.; Di Cuia, R. Structural properties of fractured and faulted Cretaceous platform carbonates, Murge Plateau (southern Italy). Mar. Pet. Geol. 2014, 57, 312–326. [Google Scholar] [CrossRef]
- Deng, H.; McClay, K. Development of extensional fault and fold system: Insights from 3D seismic interpretation of the Enderby Terrace, NW Shelf of Australia. Mar. Pet. Geol. 2019, 104, 11–28. [Google Scholar] [CrossRef]
- Qi, J.; Lyu, B.; AlAli, A.; Machado, G.; Hu, Y.; Marfurt, K. Image processing of seismic attributes for automatic fault extraction. Geophysics 2018, 84, O25–O37. [Google Scholar] [CrossRef]
- Udegbe, E.; Morgan, E.; Srinivasan, S. Big data analytics for seismic fracture identification using amplitude-based statistics. Comput. Geosci. 2019, 23, 1277–1291. [Google Scholar] [CrossRef]
- Teng, C.; Cai, Z.; Hao, F.; Cao, Z. Structural geometry and evolution of an intracratonic strike-slip fault zone: A case study from the north SB5 fault zone in the Tarim Basin, China. J. Struct. Geol. 2020, 140, 104159. [Google Scholar] [CrossRef]
- Brown, A.R.; Gerhardstein, A.C.; Burkart, K.D. Interactive Seismic Interpretation: ABSTRACT. AAPG Bull. 1983, 67, 431. [Google Scholar] [CrossRef]
- Mutter, J.C. Practical Seismic Interpretation. Eos Trans. Am. Geophys. Union 1986, 67, 1342–1343. [Google Scholar] [CrossRef]
- Peikert, E.W. Interactive Computer Graphics and the Fault Problem: ABSTRACT. AAPG Bull. 1970, 54, 556–557. [Google Scholar] [CrossRef]
- Banks, R.B. Interactive computer modeling of complex multizone faulted reservoirs using both seismic and well data. Seg Tech. Program Expand. Abstr. 1982, 1, 520. [Google Scholar]
- Blake, B.A.; Jennings, J.B.; Bone, M.R.; Phillipson, R.M. Three-Dimensional Seismic Interpretation of a Piercement Salt Dome: ABSTRACT. AAPG Bull. 1982, 66, 550. [Google Scholar] [CrossRef]
- Jacquemin, P.; Mallet, J. Automatic faults extraction using double hough transform. In SEG Technical Program Expanded Abstracts 2005; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 755–758. [Google Scholar] [CrossRef]
- Admasu, F.; Back, S.; Toennies, K. Autotracking of faults on 3D seismic data. GEOPHYSICS 2006, 71, A49–A53. [Google Scholar] [CrossRef]
- Bahorich, M.; Farmer, S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. Lead. Edge 1995, 14, 1053–1058. [Google Scholar] [CrossRef]
- Bednar, J.B. Least squares dip and coherency attributes. Lead. Edge 1998, 17, 775–776. [Google Scholar] [CrossRef]
- Marfurt, K.J.; Kirlin, R.L.; Farmer, S.L.; Bahorich, M.S. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 1998, 63, 1150. [Google Scholar] [CrossRef]
- Gersztenkorn, A.; Marfurt, K.J. Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics 1999, 64, 1468–1479. [Google Scholar] [CrossRef]
- Li, F.; Lu, W. Coherence attribute at different spectral scales. Interpretation 2014, 2, SA99–SA106. [Google Scholar] [CrossRef]
- Karimi, P.; Fomel, S.; Wood, L.; Dunlap, D. Predictive coherence. Interpretation 2015, 3, SAE1–SAE7. [Google Scholar] [CrossRef]
- Wu, X. Directional structure-tensor-based coherence to detect seismic faults and channels. Geophysics 2017, 82, A13–A17. [Google Scholar] [CrossRef]
- Richard, J.L. Detection of Zones of Abnormal Strains in Structures Using Gaussian Curvature Analysis1. AAPG Bull. 1994, 78, 1811–1819. [Google Scholar] [CrossRef]
- Roberts, A. Curvature attributes and their application to 3D interpreted horizons. First Break 2001, 19, 85–100. [Google Scholar] [CrossRef]
- Al-Dossary, S.; Marfurt, K.J. 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics 2006, 71, P41. [Google Scholar] [CrossRef]
- Gao, D. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications. Geophysics 2013, 78, O21–O31. [Google Scholar] [CrossRef]
- Di, H.; Gao, D. Efficient volumetric extraction of most positive negative curvature and flexure for fracture characterization from 3D seismic data. Geophys. Prospect. 2016, 64, 1454–1468. [Google Scholar] [CrossRef]
- Di, H. Seismic Geometric Attribute Analysis for Fracture Characterization: New Methodologies and Applications. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 2016. [Google Scholar]
- Pedersen, S.I. New paradigm of fault interpretation. Seg Tech. Program Expand. Abstr. 2003, 22, 2452. [Google Scholar]
- Jyoti, K.; Burman, R.; Datta, K.; Desgoutte, N.; Cuilh, L. Subseismic faults detection and characterization using Seismic Continuity Analysis in Mauddud Formation, Burgan Field. In SEG Technical Program Expanded Abstracts 2010; Society of Exploration Geophysicists: Denver, CO, USA, 2010; pp. 1367–1371. [Google Scholar] [CrossRef]
- Neff, D.B.; Grismore, J.R.; Lucas, W.A. Automated Seismic Fault Detection and Picking. U.S. Patent No 6,018,498, 25 January 2000. [Google Scholar]
- Cohen, I.; Coult, N.; Vassiliou, A.A. Detection and extraction of fault surfaces in 3D seismic data. Geophysics 2006, 71, P21–P27. [Google Scholar] [CrossRef]
- Hale, D. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images. Geophysics 2013, 78, O33–O43. [Google Scholar] [CrossRef]
- Wu, X.; Hale, D. 3D seismic image processing for faults. Geophysics 2016, 81, IM1–IM11. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhu, Z. Methods to enhance seismic faults and construct fault surfaces. Comput. Geosci. 2017, 107, 37–48. [Google Scholar] [CrossRef]
- Lu, P.; Morris, M.; Brazell, S.; Comiskey, C.; Xiao, Y. Using generative adversarial networks to improve deep-learning fault interpretation networks. Lead. Edge 2018, 37, 578–583. [Google Scholar] [CrossRef]
- Pedersen, S.I.; Randen, T.; Sonneland, L. Automatic fault extraction using artificial ants. In SEG Technical Program Expanded Abstracts 2002; Society of Exploration Geophysicists: Salt Lake City, UT, USA, 2002; pp. 512–515. [Google Scholar] [CrossRef]
- Miller, P.; Dasgupta, S.; Shelander, D. Seismic imaging of migration pathways by advanced attribute analysis, Alaminos Canyon 21, Gulf of Mexico. Mar. Pet. Geol. 2012, 34, 111–118. [Google Scholar] [CrossRef]
- Jie, Q.; Li, F.; Marfurt, K. Multiazimuth coherence. Geophysics 2017, 82, 1–48. [Google Scholar]
- Wu, X.; Fomel, S. Automatic fault interpretation with optimal surface voting. Geophysics 2018, 83, O67–O82. [Google Scholar] [CrossRef]
- Shi, P.; Yuan, S.; Wang, T.; Wang, Y.; Liu, T. Fracture Identification in a Tight Sandstone Reservoir: A Seismic Anisotropy and Automatic Multisensitive Attribute Fusion Framework. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1525–1529. [Google Scholar] [CrossRef]
- Di, H.; Shafiq, M.A.; Wang, Z.; AlRegib, G. Improving seismic fault detection by super-attribute-based classification. Interpretation 2019, 7, SE251–SE267. [Google Scholar] [CrossRef]
- Ashraf, U.; Zhang, H.; Anees, A.; Mangi, H.N.; Zhang, X. Application of Unconventional Seismic Attributes and Unsupervised Machine Learning for the Identification of Fault and Fracture Network. Appl. Sci. 2020, 10, 3864. [Google Scholar] [CrossRef]
- Wu, X.; Shi, Y.; Fomel, S.; Liang, L.; Zhang, Q.; Yusifov, A.Z. FaultNet3D: Predicting fault probabilities, strikes, and dips with a single convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9138–9155. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Sellars, S. Rise of the machines. Br. Dent. J. 2019, 227, 947. [Google Scholar] [CrossRef]
- Purnell, B.A. Machine learning for medicine. Science 2021, 371, 687–689. [Google Scholar] [CrossRef]
- Davies, A.; Velikovi, P.; Buesing, L.; Blackwell, S.; Zheng, D.; Tomaev, N.; Tanburn, R.; Battaglia, P.; Blundell, C.; Juhasz, A. Advancing mathematics by guiding human intuition with AI. Nature 2021, 600, 70–74. [Google Scholar] [CrossRef]
- Bergen, K.J.; Johnson, P.A.; Maarten, V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195. [Google Scholar] [CrossRef]
- Bianco, M.J.; Gerstoft, P.; Olsen, K.B.; Lin, F.C. High-resolution seismic tomography of Long Beach, CA using machine learning. Sci. Rep. 2019, 9, 14987. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.A.; Hauksson, E. P-wave arrival picking and first-motion polarity determination with deep learning. J. Geophys. Res. Solid Earth 2018, 123, 5120–5129. [Google Scholar] [CrossRef]
- Perol, T.; Gharbi, M.; Denolle, M. Convolutional Neural Network for Earthquake Detection and Location. Sci. Adv. 2018, 4, e1700578. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, Z.; Hollis, D.; Zhu, L.; Mcclellan, J. High-resolution seismic event detection using local similarity for Large-N arrays. Sci. Rep. 2018, 8, 1646. [Google Scholar] [CrossRef]
- Rouet-Leduc, B.; Hulbert, C.; Lubbers, N.; Barros, K.; Humphreys, C.J.; Johnson, P.A. Machine Learning Predicts Laboratory Earthquakes. Geophys. Res. Lett. 2017, 44, 9276–9282. [Google Scholar] [CrossRef]
- Johnson, P.A.; Rouet-Leduc, B.; Pyrak-Nolte, L.J.; Beroza, G.C.; Reade, W. Laboratory earthquake forecasting: A machine learning competition. Proc. Natl. Acad. Sci. USA 2021, 118, e2011362118. [Google Scholar] [CrossRef]
- Kong, Q.; Allen, R.M.; Schreier, L.; Kwon, Y.W. MyShake: A smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2016, 2, e1501055. [Google Scholar] [CrossRef]
- Xiong, W.; Ji, X.; Ma, Y.; Wang, Y.; AlBinHassan, N.M.; Ali, M.N.; Luo, Y. Seismic fault detection with convolutional neural network. Geophysics 2018, 83, O97–O103. [Google Scholar] [CrossRef]
- Guo, B.; Li, L.; Luo, Y. A new method for automatic seismic fault detection using convolutional neural network. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Anaheim, CA, USA, 2018; pp. 1951–1955. [Google Scholar] [CrossRef]
- An, Y.; Guo, J.; Ye, Q.; Childs, C.; Walsh, J.; Dong, R. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Comput. Geosci. 2021, 153, 104776. [Google Scholar] [CrossRef]
- Hu, G.; Hu, Z.; Liu, J.; Cheng, F.; Peng, D. Seismic Fault Interpretation Using Deep Learning-Based Semantic Segmentation Method. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Philippe, J. Illuminating Earth’s faults. Science 2019, 366, 1076–1077. [Google Scholar]
- Huang, L.; Dong, X.; Clee, T.E. A scalable deep learning platform for identifying geologic features from seismic attributes. Lead. Edge 2017, 36, 249–256. [Google Scholar] [CrossRef]
- Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [Google Scholar] [CrossRef]
- Wu, X.; Liang, L.; Shi, Y.; Geng, Z.; Fomel, S. Multitask learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophys. J. Int. 2019, 219, 2097–2109. [Google Scholar] [CrossRef]
- Wu, X.; Geng, Z.; Shi, Y.; Pham, N.; Fomel, S.; Caumon, G. Building realistic structure models to train convolutional neural networks for seismic structural interpretation. Geophysics 2020, 85, WA27–WA39. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q.; Yusifov, A.; Shi, Y. Applications of supervised deep learning for seismic interpretation and inversion. Lead. Edge 2019, 38, 526–533. [Google Scholar] [CrossRef]
- Bi, Z.; Wu, X.; Geng, Z.; Li, H. Deep Relative Geologic Time: A Deep Learning Method for Simultaneously Interpreting 3-D Seismic Horizons and Faults. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021882. [Google Scholar] [CrossRef]
- Jing, W.; Jun-Hua, Z.; Jia-Liang, Z.; Feng-Ming, L.; Rui-Gang, M.; Zuoqian, W. Research on fault recognition method combining 3D Res-UNet and knowledge distillation. Appl. Geophys. 2021, 18, 199–212. [Google Scholar]
- Gao, K.; Huang, L.; Zheng, Y.; Lin, R.; Hu, H.; Cladohous, T. Automatic fault detection on seismic images using a multiscale attention convolutional neural network. Geophysics 2021, 87, N13–N29. [Google Scholar] [CrossRef]
- Gao, K.; Huang, L.; Zheng, Y. Fault Detection on Seismic Structural Images Using a Nested Residual U-Net. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Z.; Liu, S. Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples. Energies 2021, 14, 3650. [Google Scholar] [CrossRef]
- Cunha, A.; Pochet, A.; Lopes, H.; Gattass, M. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Comput. Geosci. 2020, 135, 104344. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Z.; Gu, H. Automatic fault recognition with residual network and transfer learning. Oil Geophys. Prospect. 2020, 55, 950–956. [Google Scholar]
- Zhou, R.; Yao, X.; Hu, G.; Yu, F. Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophys. Prospect. 2021, 69, 1218–1234. [Google Scholar] [CrossRef]
- Zhou, R.; Yao, X.; Hu, G.; Yu, F. Seismic fault detection with progressive transfer learning. Acta Geophys. 2021, 69, 2187–2203. [Google Scholar] [CrossRef]
- An, Y.; Guo, J.; Ye, Q.; Childs, C.; Walsh, J.; Dong, R. A gigabyte interpreted seismic dataset for automatic fault recognition. Data Brief 2021, 37, 107219. [Google Scholar] [CrossRef]
- Li, S.; Liu, N.; Li, F.; Gao, J.; Ding, J. Automatic Fault Delineation in 3D Seismic Images with Deep Learning: Data Augmentation or Ensemble Learning? IEEE Trans. Geosci. Remote Sens. 2022, 60, 1. [Google Scholar] [CrossRef]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. In Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, Washington, DC, USA, 25–28 August 2013; IEEE Computer Society: Los Alamitos, CA, USA, 2003; Volume 3, p. 958. [Google Scholar] [CrossRef]
- Sander, D.; Willett, K.W.; Joni, D. Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc. 2015, 450, 1441–1459. [Google Scholar]
- Park, S.; Lee, S.-b.; Park, J. Data augmentation method for improving the accuracy of human pose estimation with cropped images. Pattern Recognit. Lett. 2020, 136, 244–250. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wenkai, L.U.; Liu, J.L.; Zhang, M.; Miao, Y.K. Random seismic noise attenuation based on data augmentation and CNN. Chin. J. Geophys. 2019, 62, 421–433. [Google Scholar]
- Li, W.; Wang, J. Residual Learning of Cycle-GAN for Seismic Data Denoising. IEEE Access 2021, 9, 11585–11597. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Li, T.; Zuo, R.; Xiong, Y.; Peng, Y. Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral Prospectivity Mapping. Nat. Resour. Res. 2020, 30, 27–38. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer International Publishing: Munich, Germany, 2015. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. arXiv 2020, arXiv:2005.12872. [Google Scholar]
- Caron, M.; Touvron, H.; Misra, I.; J’egou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging Properties in Self-Supervised Vision Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9630–9640. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Doll’ar, P.; Girshick, R.B. Masked Autoencoders Are Scalable Vision Learners. arXiv 2021, arXiv:2111.06377. [Google Scholar]
- Karras, T.; Aittala, M.; Laine, S.; Harkonen, E.; Hellsten, J.; Lehtinen, J.; Aila, T. Alias-Free Generative Adversarial Networks. Adv. Neural Inf. Process. Syst. 2021, 34, 852–863. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Kingsbury, B. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Grose, L.; Laurent, G.; Aillères, L.; Armit, R.; Jessell, M.; Caumon, G. Structural data constraints for implicit modeling of folds. J. Struct. Geol. 2017, 104, 80–92. [Google Scholar] [CrossRef]
- Georgsen, F.; Røe, P.; Syversveen, A.R.; Lia, O. Fault displacement modelling using 3D vector fields. Comput. Geosci. 2012, 16, 247–259. [Google Scholar] [CrossRef]
- Barnett, J.A.; Mortimer, J.; Rippon, J.H.; Walsh, J.J.; Watterson, J. Displacement geometry in the volume containing a single normal fault. AAPG Bull. 1987, 71, 925–937. [Google Scholar]
- Choi, J.H.; Edwards, P.; Ko, K.; Kim, Y.S. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Sci. Rev. 2016, 152, 70–87. [Google Scholar] [CrossRef]
- Walsh, J.; Watterson, J. Distributions of cumulative displacement and seismic slip on a single normal fault surface. J. Struct. Geol. 1987, 9, 1039–1046. [Google Scholar] [CrossRef]
- Walsh, J.J.; Watterson, J. Displacement gradients on fault surfaces. J. Struct. Geol. 1989, 11, 307–316. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sanderson, D.J. The relationship between displacement and length of faults: A review. Earth-Sci. Rev. 2005, 68, 317–334. [Google Scholar] [CrossRef]
- Teper, L.; Lisek, A. Analysis of displacement geometry: A tool for identifying kinematic form of fault. Publ. Inst. Geophys. Pol. Acad. Sci. 2006, M-29, 119–130. [Google Scholar]
- Teper, L.; Lisek, A. Przestrzenna Zmiennosc Warunkow Deformacji Gorotworu w Rejonie Siodla Glownego Wyznaczona na Podstawie Badan Geometrii Uskokow (Spatial Variability of Rock Mass Deformation Conditions in the Region of the Main Saddle Determined on the Basis of Fault Geometry Study), in Geneza i Charakterystyka Zagrozenia Sejsmicznego w Gornoslaskim Zaglebiu Weglowym (Origin and Characteristics of Seismic Hazard in the Upper Silesian Coal Basin); Zuberek, W.M., Jochymczyk, L., Eds.; Wydawnictwo Uniwersytetu Slaskiego: Katowice, Poland, 2010; pp. 14–26. (In Polish) [Google Scholar]
- Caumon, G.; Tertois, A.L.; Zhang, L. Elements for stochastic structural perturbation of stratigraphic models. In Proceedings of the EAGE Conference on Petroleum Geostatistics, European Association of Geoscientists & Engineers, Cascais, Portugal, 10–14 September 2007; p. cp-32-00002. [Google Scholar]
- Cherpeau, N.; Caumon, G.; Lévy, B. Stochastic simulations of fault networks in 3D structural modeling. Comptes Rendus Geosci. 2010, 342, 687–694. [Google Scholar] [CrossRef]
- Lin, S.; Williams, P.F. The origin of ridge-in-groove slickenside striae and associated steps in an S-C mylonite. J. Struct. Geol. 1992, 14, 315–321. [Google Scholar] [CrossRef]
- Lin, S.; Jiang, D.; Williams, P.F. Importance of differentiating ductile slickenside striations from stretching lineations and variation of shear direction across a high-strain zone. J. Struct. Geol. 2007, 29, 850–862. [Google Scholar] [CrossRef]
- Pigott, J.; Prapasanobon, N. 3-D Seismic Fault-Plane Images from Offshore Myanmar, Gulf of Thailand, and Lake Maracaibo: Insight into Regional Stresses and Hydrocarbon Migration Pathways. In Proceedings of the AAPG International Conference and Exhibition, AAPG, Milan, Italy, 23–26 October 2011. [Google Scholar]
- Zhang, J.; Jinyi, L.I.; Zongjin, M.A.; Ren, W. Structural Traces of Secondary Faults (Fractures) along the Main Faults and Their Reliability as Kinematic Indicators. Acta Geol. Sin. 2011, 85, 1137–1149. [Google Scholar] [CrossRef]
- Cardozo, N.; Røe, P.; Soleng, H.H.; Fredman, N.; Tveranger, J.; Schueller, S. A methodology for efficiently populating faulted corner point grids with strain. Pet. Geosci. 2008, 14, 205–216. [Google Scholar] [CrossRef]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In International Workshop on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201. [Google Scholar]
- Grasemann, B.; Stüwe, K.; Vannay, J.C. Sense and non-sense of shear in flanking structures. J. Struct. Geol. 2003, 25, 19–34. [Google Scholar] [CrossRef]
- Grasemann, B.; Martel, S.; Passchier, C. Reverse and normal drag along a fault. J. Struct. Geol. 2005, 27, 999–1010. [Google Scholar] [CrossRef]
- Wiesmayr, G.; Grasemann, B. Sense and non-sense of shear in flanking structures with layer-parallel shortening: Implications for fault-related folds. J. Struct. Geol. 2005, 27, 249–264. [Google Scholar] [CrossRef]
- Chen, Y.; Gilder, S.; Halim, N.; Cogné, J.; Courtillot, V. New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics 2002, 21, 6-1–6-19. [Google Scholar] [CrossRef]
- Kimura, H.; Ishikawa, N.; Sato, H. Estimation of total lateral displacement including strike-slip offset and broader drag deformation on an active fault: Tectonic geomorphic and paleomagnetic evidence on the Tanna fault zone in central Japan. Tectonophysics 2011, 501, 87–97. [Google Scholar] [CrossRef]
- Li, B.; Yan, M.; Zhang, W.; Fang, X.; Meng, Q.; Zan, J.; Chen, Y.; Zhang, D.; Yang, Y.; Guan, C. New paleomagnetic constraints on middle Miocene strike-slip faulting along the middle Altyn Tagh Fault. J. Geophys. Res. Solid Earth 2017, 122, 4106–4122. [Google Scholar] [CrossRef]
- Wei, X.L.; Zhang, C.X.; Kim, S.W.; Jing, K.L.; Wang, Y.J.; Xu, S.; Xie, Z.Z. Seismic fault detection using convolutional neural networks with focal loss. Comput. Geosci. 2022, 158, 104968. [Google Scholar] [CrossRef]
- Zhu, W.; Tai, K.S.; Mousavi, S.M.; Bailis, P.; Beroza, G.C. An End-To-End Earthquake Detection Method for Joint Phase Picking and Association Using Deep Learning. J. Geophys. Res. (Solid Earth) 2022, 127, e2021JB023283. [Google Scholar] [CrossRef]
Fault Detection Methods | Ours | Net_manual [62] | Net_transfer [118] | Net_syn_our | Net_syn_Wu [68] | Coherence [19] | Curvature [25] |
---|---|---|---|---|---|---|---|
Ours | 1.0 | 0.2858 | 0.1804 | 0.2825 | 0.2870 | 0.2518 | 0.0931 |
Net_manual [62] | 0.2858 | 1.0 | 0.1145 | 0.1315 | 0.2101 | 0.1054 | 0.0432 |
Net_transfer [118] | 0.1804 | 0.1145 | 1.0 | 0.4418 | 0.1711 | 0.1287 | 0.0599 |
Net_syn_our | 0.2825 | 0.1315 | 0.4418 | 1.0 | 0.2389 | 0.3133 | 0.1142 |
Net_syn_Wu [68] | 0.2870 | 0.2101 | 0.1711 | 0.2389 | 1.0 | 0.2073 | 0.0781 |
Coherence [19] | 0.2518 | 0.1054 | 0.1287 | 0.3133 | 0.2073 | 1.0 | 0.1782 |
Curvature [25] | 0.0931 | 0.0432 | 0.0599 | 0.1142 | 0.0781 | 0.1782 | 1.0 |
Fault Detection Methods | Ours | Net_manual [62] | Net_transfer [118] | Net_syn_our | Net_syn_Wu [68] | Coherence [19] | Curvature [25] |
---|---|---|---|---|---|---|---|
Ours | 1.0 | 0.2008 | 0.1772 | 0.3372 | 0.2125 | 0.3221 | 0.2030 |
Net_manual [62] | 0.2008 | 1.0 | 0.1175 | 0.1398 | 0.1842 | 0.1267 | 0.0571 |
Net_transfer [118] | 0.1772 | 0.1175 | 1.0 | 0.4335 | 0.1381 | 0.1299 | 0.0703 |
Net_syn_our | 0.3372 | 0.1398 | 0.4335 | 1.0 | 0.1859 | 0.2984 | 0.1956 |
Net_syn_Wu [68] | 0.2125 | 0.1842 | 0.1381 | 0.1859 | 1.0 | 0.1576 | 0.0929 |
Coherence [19] | 0.3221 | 0.1267 | 0.1299 | 0.2984 | 0.1576 | 1.0 | 0.4259 |
Curvature [25] | 0.2030 | 0.0571 | 0.0703 | 0.1956 | 0.0929 | 0.4259 | 1.0 |
Fault Detection Methods | Ours | Net_manual [62] | Net_transfer [118] | Net_syn_our | Net_syn_Wu [68] | Coherence [19] | Curvature [25] |
---|---|---|---|---|---|---|---|
Ours | 1.0 | 0.1968 | 0.1209 | 0.2215 | 0.1882 | 0.1070 | 0.0509 |
Net_manual [62] | 0.1968 | 1.0 | 0.0807 | 0.1505 | 0.1540 | 0.1174 | 0.0523 |
Net_transfer [118] | 0.1209 | 0.0807 | 1.0 | 0.4346 | 0.0979 | 0.0411 | 0.0149 |
Net_syn_our | 0.2215 | 0.1505 | 0.4346 | 1.0 | 0.1942 | 0.0949 | 0.0371 |
Net_syn_Wu [68] | 0.1882 | 0.1540 | 0.0979 | 0.1942 | 1.0 | 0.2078 | 0.0982 |
Coherence [19] | 0.1070 | 0.1174 | 0.0411 | 0.0949 | 0.2078 | 1.0 | 0.2637 |
Curvature [25] | 0.0509 | 0.0523 | 0.0149 | 0.0371 | 0.0982 | 0.2637 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Si, X.; Cai, Z.; Cui, Y. Structural Augmentation in Seismic Data for Fault Prediction. Appl. Sci. 2022, 12, 9796. https://doi.org/10.3390/app12199796
Wang S, Si X, Cai Z, Cui Y. Structural Augmentation in Seismic Data for Fault Prediction. Applied Sciences. 2022; 12(19):9796. https://doi.org/10.3390/app12199796
Chicago/Turabian StyleWang, Shenghou, Xu Si, Zhongxian Cai, and Yatong Cui. 2022. "Structural Augmentation in Seismic Data for Fault Prediction" Applied Sciences 12, no. 19: 9796. https://doi.org/10.3390/app12199796
APA StyleWang, S., Si, X., Cai, Z., & Cui, Y. (2022). Structural Augmentation in Seismic Data for Fault Prediction. Applied Sciences, 12(19), 9796. https://doi.org/10.3390/app12199796