# Design and Simulation of a Solar Tracking System for PV

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Assumptions

#### 2.2. Block Diagram of a Single-Axis Tracker

_{out}, given by Equation (1), with an R

_{1}resistance LDR and R

_{2}resistance standard. The controller changes the motor direction [21,22,23,24,25].

#### 2.3. D.C. Motor Block Controlled by a Chopper

_{com}with a variable duty cycle. The chopper’s role in the solar tracker system is to vary the rotational speed of the D.C. motors. The equivalent model of a motor contains a resistance (Rm), an inductance (Lm), and an electromotive force (E). In addition, the protection elements such as freewheeling diodes are necessarily added [26,27,28]. The steps below are taken into consideration while creating the model of the D.C. motor [29].

- -
- Variation of the speed for a motor by the P.W.M. (pulse width modulation) command.
- -
- Voltage reversible chopper.
- -
- The average value of the supply voltage.
- -
- Direction inversion control.

#### 2.4. Effective Radiation Quantity on the Solar Panel and Calculation of Solar Irradiance

## 3. Design and Implementation

#### 3.1. Electronic Control

#### 3.2. Servomotor

## 4. Results and Discussion

#### 4.1. Modeling of a PV Panel

^{2}, cell temperature: 25 °C, AM = 1.5).

**Current-voltage (I-V) curve and power-voltage curve (P-V) of the PV module (T = 25 °C, G = 1000 W/m**

^{2}):^{2}) exhibit a nonlinear relationship with the temperature and irradiance. However, on this characteristic curve (Figure 6a,b), there is a unique point where the entire system can work with maximum efficiency. This point is called the maximum power point M.P.P. It requires calculations, tracking, and control techniques to ensure the PV system is operating at this unique point to achieve the most incredible power harvest. Tracking of the maximum power point (MPPT) is a way to extract the maximum energy from the photovoltaic panels at different irradiance levels. Figure 6 shows the characteristic I-V and P-V of the PV module for a temperature T = 25 °C and a solar radiation G = 1000 W/m

^{2}. We found the short circuit current or the maximum current at zero voltage ISC = 8.24 A and the open circuit voltage or the maximum voltage at zero current VOC = 33.53 V. This result explains the 54 cells that make up the photovoltaic panel. The power delivered by the PV panels depends on the operating point of the generator. The max point represents the maximum power delivered by the generator (P

_{MPP}= I

_{MPP}*V

_{MPP}, where, V

_{MPP}s to the voltage to the maximum power supplied by PMPP, and the IMPP corresponds to the current to the maximum power supplied P

_{MPP}).

**Influence of temperature and Irradiance on I-V and P-V characteristics:**

^{2}) is represented in Figure 7a,b. We note that this characteristic I-V varies only slightly when the temperature varies, which means that the temperature has an effect over a long period of operation. It shows that the short-circuit current (I.S.C.) increases slightly with the temperature. It is thus observed that the influence of the temperature on (I.S.C.) and the maximum power current can be negligible and that the maximum power (PMPP) of the PV module undergoes a decrease when the temperature increases.

^{2}, S is the surface of the cell in m

^{2}, α(T) is a coefficient depending weakly on the temperature; it is expressed in A/W (in our case α = 0.136/°K). Therefore, we can conclude that the shift of the I-V curves toward the increasing values allows the module to produce greater electrical power. This explains that solar irradiations lead to an increase in power corresponding to the maximum power points (P

_{MPP}).

#### 4.2. Command of the Servomotor for Position-Controlled by P.W.M.

#### 4.3. Simulation of the Sun

- -
- Equal to 0 from 00:45 a.m. to 4:45 a.m. and from 8:45 p.m. to 11:45 p.m.;
- -
- Starts increasing by 11 and 1030 from 5:45 a.m. to 13:45 p.m., then decreases from 1030 to 8 from 2:45 p.m. to 7:45 p.m.

#### 4.4. Tests of the Tracker

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hua, Z.; Ma, C.; Lian, J.; Pang, X.; Yang, W. Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand. Appl. Energy
**2019**, 238, 721–733. [Google Scholar] [CrossRef] - Gómez-Uceda, F.J.; Moreno-Garcia, I.M.; Jiménez-Martínez, J.M.; López-Luque, R.; Fernández-Ahumada, L.M. Analysis of the Influence of Terrain Orientation on the Design of PV Facilities with Single-Axis Trackers. Appl. Sci.
**2020**, 10, 8531. [Google Scholar] [CrossRef] - Chong, K.; Wong, C. General Formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector. Sol. Energy
**2009**, 83, 298–305. [Google Scholar] [CrossRef] - Ferroudji, F. Conception et Optimisation en Dynamique Forcée D’un Nouveau Prototype de Système de Suiveur Solaire à Deux axes. Ph.D. Thesis, University of Batna, Batna, Algeria, 2015. [Google Scholar]
- Abu-Khadera, M.; Badranb, O.; Abdallah, S. Evaluating multi-axes sun-tracking system at different modes of operation in Jordan. Renew. Sustain. Energy Rev.
**2008**, 12, 864–873. [Google Scholar] [CrossRef] - Available online: http://shodh.inflibnet.ac.in/bitstream/123456789/4251/3/03_liteature%20review.pdf (accessed on 22 August 2022).
- Alexandru, C.; Pozna, C. Different tracking strategies for optimizing the energetic efficiency of a photovoltaic system. In Proceedings of the 2008 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–25 May 2008; Volume 3, pp. 434–439. [Google Scholar]
- Natarajan, S.K.; Thampi, V.; Shaw, R.; Kumar, V.S.; Nandu, R.S.; Jayan, V.; Rajagopalan, N.; Kandasamy, R.K. Experimental analysis of a two axis tracking system for solar parabolic dish collector. Int. J. Energy Res.
**2019**, 43, 1012–1018. [Google Scholar] [CrossRef] - AL-Rousan, N.; Mat Isa, N.A.; Mat Desa, M.K. Correlation analysis and MLP/CMLP for optimum variables to predict orientation and tilt angles in intelligent solar tracking systems. Int. J. Energy Res.
**2021**, 45, 453–477. [Google Scholar] [CrossRef] - Farrar-Foley, N.; Rongione, N.A.; Wu, H.; Lavine, A.S.; Hu, Y. Total solar spectrum energy converter with integrated photovoltaics, thermoelectrics, and thermal energy storage: System modeling and design. Int. J. Energy Res.
**2021**, 46, 5731–5744. [Google Scholar] [CrossRef] - El Moubarak Bouzid, A.; Mohammed, A. Dimensionnement D’un Système Photovoltaïque Pour L’alimentation D’une Ferme Étude de L’onduleur Triphasé Lié à Cette Application. Engineer Thesis, University of Oran, Es Senia, Algeria, 2008. [Google Scholar]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types. A review. Renew. Sustain. Energy Rev.
**2018**, 91, 754–782. [Google Scholar] [CrossRef] - Merlaud, A.; De Mazière, M.; Hermans, C.; Cornet, A. Equations for Solar Tracking. Sensors
**2012**, 12, 4074–4090. [Google Scholar] [CrossRef] - Ruelas, J.; Muñoz, F.; Lucero, B.; Palomares, J. PV Tracking Design Methodology Based on an Orientation Efficiency Chart. Appl. Sci.
**2019**, 9, 894. [Google Scholar] [CrossRef][Green Version] - Visconti, P.; Costantini, P.; Orlando, C.; Lay-Ekuakille, A.; Cavalera, G. Software solution implemented on hardware system to manage and drive multiple bi-axial solar trackers by PC in photovoltaic solar plants. Measurement
**2015**, 76, 80–92. [Google Scholar] [CrossRef] - Nsengiyumva, W.; Chen, S.G.; Hu, L.; Chen, X. Recent advancements and challenges in Solar Tracking Systems (S.T.S.): A review. Renew. Sustain. Energy Rev.
**2018**, 81, 250–279. [Google Scholar] [CrossRef] - Awasthi, A.; Shukla, A.K.; Manohar S.R., M.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep.
**2020**, 6, 392–405. [Google Scholar] [CrossRef] - Ladmi, A.; Arbaoui, K. Modélisation et Optimisation des Performances D’un Suiveur Solaire. Master’s Thesis, Faculty of Sciences and Technology, University of Khemis Miliana, Khemis Miliana, Algeria, 2019. [Google Scholar]
- Hariri, N.G.; AlMutawa, M.A.; Osman, I.S.; AlMadani, I.K.; Almahdi, A.M.; Ali, S. Experimental Investigation of Azimuth- and Sensor-Based Control Strategies for a PV Solar Tracking Application. Appl. Sci.
**2022**, 12, 4758. [Google Scholar] [CrossRef] - Alici, H.; Esenboga, B.; Oktem, I.; Demirdelen, T.; Tumay, M. Chapter 7: Designing and performance analysis of solar tracker system: A case st udy of Çukurova region. In Design, Analysis, and Applications of Renewable Energy Systems Advances in Nonlinear Dynamics and Chaos (ANDC); Academic Press: New York, NY, USA, 2021; pp. 165–184. [Google Scholar]
- Balabel, A.; Mahfouz, A.; Salem, F. Design and performance of Solar Tracking Photo-Voltaic system; Research and education. Int. J. Control Autom. Syst.
**2013**, 1, 49–55. [Google Scholar] - Etude, K.I. Conception et Réalisation d’un Suiveur de Soleil. Master’s Thesis, University of Abou-Bekr Belkaid Tlemcen-Algeria, Chetouane, Algeria, 2018. [Google Scholar]
- Chin, C.S.; Babu, A.; McBride, W. Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink. Renew. Energy
**2011**, 36, 3075–3090. [Google Scholar] [CrossRef] - Mousazadeh, H.; Keyhani, A.; Javadi, A.; Mobli, H.; Abrinia, K.; Sharifi, A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev.
**2009**, 13, 1800–1818. [Google Scholar] [CrossRef] - Afarulrazi, B.A.; Utomo, W.M.; Liew, K.L.; Zarafi, M. Solar tracker robot using microcontroller. In Proceedings of the 2011 International Conference on Business, Engineering and Industrial Applications, Kuala Lumpur, Malaysia, 5–7 June 2011; pp. 47–50. [Google Scholar]
- Nuwayhid, R.Y.; Mrad, F.; Abu-Said, R. The realization of a simple solar tracking concentrator for university research applications. Renew. Energy
**2001**, 24, 207–222. [Google Scholar] [CrossRef] - Le Moteur à Courant Continu: Principe, Astuces-Pratiques. 2015. Available online: https://www.astuces-pratiques.fr/electronique/le-moteur-a-courant-continu-principe (accessed on 22 August 2022).
- Eric, G. Le Servomoteur. 2011. Available online: http://ericaeromodelisme974.unblog.fr/2011/06/04/le-servomoteur (accessed on 22 August 2022).
- Rabeh, M.B.; Ayoub, D. Conception et Réalisation d’un Suiveur Solaire Bi-axial à Bas De capteurs de lumière. Master’s Thesis, University of Kasdi Merbah Ouargla, Ouargla, Algeria, 2016. [Google Scholar]
- Electrical Guide 360. D.C. Chopper or DC-to-DC Converter: Working & Its Function; Power Electronics: Valencia, Spain, 2021. [Google Scholar]
- Solar Angles & Tracking Systems. Photovoltaic Efficiency: Lesson 1, Fundamentals Article; Free STEM Curriculum for K-12. Available online: https://www.TeachEngineering.org (accessed on 22 August 2022).
- Telidjane, M. Modélisation des Panneaux Photovoltaïques et Adaptation de la Cyclostationarité pour le Diagnostic. Ph.D. Thesis, University of Lyon, Lyon, France, 13 July 2017. [Google Scholar]
- Marwan; Anshar, M. Controller Design for Solar Tracking System. In Proceedings of the International Conferences on Information System and Technology (CONRIST 2019), Yogyakarta, Indonesia, 5–6 December 2019; pp. 72–77. [Google Scholar] [CrossRef]
- Engr, F. How to Make a Solar Tracker Using Arduino, Arduino Solar Tracker System Its Circuit and Programming; Electronic Clinic: Wan Chai, Hong Kong, 2019. [Google Scholar]
- Aqib, M. Sun Tracking Solar Panel Using Arduino. Microcontroller-Projects. 2017. Available online: https://Circuitdigest.com (accessed on 22 August 2022).
- Necir, A.; Bouchaala, A.D.J. Conception et Réalisation d’un Suiveur du Soleil Commandé par une Carte Arduino. Master’s Thesis, University of El-Oued, El Oued, Algeria, 2018. [Google Scholar]
- Koussa, M.; Cheknane, A.; Hadji, S.; Haddadi, M.; Noureddine, S. Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. Appl. Energy
**2011**, 88, 1756–1771. [Google Scholar] [CrossRef] - Bahrami, A.; Okoye, C.O.; Atikol, U. The effect of latitude on the performance of di erent solar trackers in Europe and Africa. Appl. Energy
**2016**, 177, 896–906. [Google Scholar] [CrossRef] - Abdallah, S.; Nijmeh, S. Two axes sun tracking system with PLC control. Energy Convers. Manag.
**2004**, 45, 1931–1939. [Google Scholar] [CrossRef] - Antonanzas, J.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas, F. Optimal solar tracking strategy to increase irradiance in the plane of array under cloudy conditions: A study across Europe. Sol. Energy
**2018**, 163, 122–130. [Google Scholar] [CrossRef] - Batayneh, W.; Bataineh, A.; Soliman, I.; Hafees, S. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Autom. Constr.
**2019**, 98, 102–109. [Google Scholar] [CrossRef] - Manoel Henriques de Sa, C.; Chigueru, T. npTrack: A n-Position Single Axis Solar Tracker Model for Optimized Energy Collection. Energies
**2021**, 14, 925. [Google Scholar] - Seme, S.; Stumberger, B.; Hadziselimovic, M.; Sredensek, K. Solar Photovoltaic Tracking Systems for Electricity Generation: A Review. Energies
**2020**, 13, 4224. [Google Scholar] [CrossRef] - Kuttybay, N.; Saymbetov, A.; Mekhilef, S.; Nurgaliyev, M.; Tukymbekov, D.; Dosymbetova, G.; Meiirkhanov, A.; Svanbayev, Y. Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions. Energies
**2020**, 13, 5226. [Google Scholar] [CrossRef] - Farajdadian, S.; Hosseini, S.M.H. Conception d’un contrôleur flou optimal pour obtenir une puissance maximale dans un système de production d’énergie solaire. Solar Energy
**2019**, 182, 161–178. [Google Scholar] [CrossRef] - Onyeka Okoye, C.; Bahrami, A.; Atikol, U. Evaluating the solar resource potential on different tracking surfaces in Nigeria. Renew. Sustain. Energy Rev.
**2018**, 81 Pt 1, 1569–1581. [Google Scholar] [CrossRef]

**Figure 3.**(

**a**) Servo motor electrical diagram; (

**b**) Position of the servo motor compared with the Arduino card.

**Figure 6.**Characteristic curves of the PV module: (

**a**) Current-voltage I-V curve, (

**b**) Power-voltage curve P-V.

**Figure 7.**Influence of the variation in the temperature value on (

**a**) characteristic I-V; (

**b**) characteristic P-V. Influence of variation in the irradiance value on (

**c**) characteristic I-V; (

**d**) characteristic P-V.

**Figure 11.**(

**a**) Temporal variation of irradiance during a day. (

**b**) Temporal variation of temperature during a day.

**Figure 13.**Tests of the tracker position: (

**a**) start position of the solar tracker realized to start tracking of the light. (

**b**) Perpendicular position (90°) of the solar tracker.

**Figure 14.**Variation of the motor angle with respect to the sun’s angle: (

**a**) for test 1. (

**b**): for test 2.

**Figure 16.**Values of (

**a**) solar radiation, (

**b**) voltage, (

**c**) current, and (

**d**) power produced by a PV panel bound with a solar tracker compared to a fixed PV panel.

**Table 1.**Characteristic parameters of the servomotor used in the construction of the prototype of the single-axis tracker.

Parameters/Characteristics | Values |
---|---|

Weight | 14.6 g |

Torque | 2.5 kg.cm (4.8 v) 2.8 kg.cm (6.0 v) |

Operating speed | Operating: 0.11 s/60 degree (4.8 v) 0.09 s/60 degree (6.0 v) |

Size | 22.5 × 12.2 × 35 mm |

Parameters/Characteristics | Values |
---|---|

$\mathrm{Maximum\; power}{\mathrm{P}}_{\mathrm{mpp}}\left[\mathrm{W}\right]$ | 200 |

$\mathrm{Voltage\; of\; the\; maximum\; power}{\mathrm{V}}_{\mathrm{mpp}}\left[\mathrm{V}\right]$ | 25.38 |

$\mathrm{Current\; of\; the\; maximum\; power}{\mathrm{I}}_{\mathrm{mpp}}\left[\mathrm{A}\right]$ | 7.89 |

$\mathrm{Open-circuit\; voltage}{\mathrm{V}}_{\mathrm{.O.C.}}\left[\mathrm{V}\right]$ | 33.53 |

$\mathrm{Short-circuit\; current}{\mathrm{I}}_{\mathrm{SC}}\left[\mathrm{A}\right]$ | 8.24 |

$\mathrm{Temperature}\mathrm{Coefficient}{\mathrm{K}}_{\mathrm{i}}({\mathrm{I}}_{\mathrm{SC}})$[%/K] | 0.136 |

$\mathrm{Temperature}\mathrm{Coefficient}{\mathrm{K}}_{\mathrm{i}}({\mathrm{V}}_{\mathrm{OC}})$[%/K] | −0.37101 |

$\mathrm{Temperature}\mathrm{Coefficient}{\mathrm{K}}_{\mathrm{i}}({\mathrm{P}}_{\mathrm{mpp}})$[%/K] | −0.47 |

Length x width x height [mm] | 1660 × 990 × 50 |

Number of cells | 54 |

Cell size [mm] | 156 × 156 |

Cell material | Monocrystalline Si stalling |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Baouche, F.Z.; Abderezzak, B.; Ladmi, A.; Arbaoui, K.; Suciu, G.; Mihaltan, T.C.; Raboaca, M.S.; Hudișteanu, S.V.; Țurcanu, F.E.
Design and Simulation of a Solar Tracking System for PV. *Appl. Sci.* **2022**, *12*, 9682.
https://doi.org/10.3390/app12199682

**AMA Style**

Baouche FZ, Abderezzak B, Ladmi A, Arbaoui K, Suciu G, Mihaltan TC, Raboaca MS, Hudișteanu SV, Țurcanu FE.
Design and Simulation of a Solar Tracking System for PV. *Applied Sciences*. 2022; 12(19):9682.
https://doi.org/10.3390/app12199682

**Chicago/Turabian Style**

Baouche, Fatima Zohra, Bilal Abderezzak, Abdennour Ladmi, Karim Arbaoui, George Suciu, Traian Candin Mihaltan, Maria Simona Raboaca, Sebastian Valeriu Hudișteanu, and Florin Emilian Țurcanu.
2022. "Design and Simulation of a Solar Tracking System for PV" *Applied Sciences* 12, no. 19: 9682.
https://doi.org/10.3390/app12199682