Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, B.H.; Lan, H.B.; Liu, H.Z. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv. 2018, 1, 170004. [Google Scholar] [CrossRef]
- Sevilla, G.A.T.; Cordero, M.D.; Nassar, J.M.; Hanna, A.N.; Kutbee, A.T.; Arevalo, A.; Hussain, M.M. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems. Adv. Mater. Technol. 2017, 2, 1600175. [Google Scholar] [CrossRef]
- Mohammed, M.G.; Kramer, R. All-Printed Flexible and Stretchable Electronics. Adv. Mater. 2017, 29, 1604965. [Google Scholar] [CrossRef]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sens. J. 2015, 15, 3164–3185. [Google Scholar] [CrossRef]
- Vella, S.; Smithson, C.; Halfyard, K.; Shen, E.; Chretien, M. Integrated capacitive sensor devices aerosol jet printed on 3D objects. Flex. Print. Electron. 2019, 4, 045005. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Lee, S.; Patel, A.; Unocic, R.R.; Shamsaei, N.; Mahjouri-Samani, M. Dry Printing and Additive Nanomanufacturing of Flexible Hybrid Electronics and Sensors. Adv. Mater. Interfaces 2022, 9, 2102569. [Google Scholar] [CrossRef]
- An, B.W.; Kim, K.; Lee, H.; Kim, S.-Y.; Shim, Y.; Lee, D.-Y.; Song, J.Y.; Park, J.-U. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Ink-jet with Multiple Functional Inks. Adv. Mater. 2015, 27, 4322–4328. [Google Scholar] [CrossRef]
- Shi, J.; Guo, C.X.; Chan-Park, M.B.; Li, C.M. All-Printed Carbon Nanotube finFETs on Plastic Substrates for High-Performance Flexible Electronics. Adv. Mater. 2012, 24, 358–361. [Google Scholar] [CrossRef]
- Pace, G.; Grimoldi, A.; Natali, D.; Sampietro, M.; Coughlin, J.E.; Bazan, G.C.; Caironi, M. All-Organic and Fully-Printed Semitransparent Photodetectors Based on Narrow Bandgap Conjugated Molecules. Adv. Mater. 2014, 26, 6773–6777. [Google Scholar] [CrossRef]
- Lee, C.; Kang, H.; Kim, H.; Nguyen, H.A.D.; Shin, K. Quality control with matching technology in roll to roll printed electronics. J. Mech. Sci. Technol. 2010, 24, 315–318. [Google Scholar] [CrossRef]
- Yun, C.; Choi, J.; Kang, H.W.; Kim, M.; Moon, H.; Sung, H.J.; Yoo, S. Digital-Mode Organic Vapor-Jet Printing (D-OVJP): Advanced Jet-on-Demand Control of Organic Thin-Film Deposition. Adv. Mater. 2012, 24, 2857–2862. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Jiang, Z.; Ren, D.; Li, S.; Wang, J.; Cai, X.; Zhang, D.; Guo, Q.; Xiao, J.; Yang, J. High-Performance Flexible Micro-Supercapacitors Printed on Textiles for Powering Wearable Electronics. ChemElectroChem 2021, 8, 1574. [Google Scholar] [CrossRef]
- Leenen, M.A.M.; Arning, V.; Thiem, H.; Steiger, J.; Anselmann, R. Printable electronics: Flexibility for the future. Phys. Stat. Sol. 2009, 206, 588–597. [Google Scholar] [CrossRef]
- Janczak, D.; Zych, M.; Raczynski, T.; Dybowska-Sarapuk, L.; Peplowski, A.; Krzeminski, J.; Sosna-Glebska, A.; Znajdek, K.; Sibinski, M.; Jakubowska, M. Stretchable and Washable Electroluminescent Display Screen-Printed on Textile. Nanomaterials 2019, 9, 1276. [Google Scholar] [CrossRef] [PubMed]
- Torres Sevilla, G.A.; Hussain, M.M. Printed Organic and Inorganic Electronics: Devices To Systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 147–160. [Google Scholar] [CrossRef]
- Baker, D.V.; Bao, C.; Kim, W.S. Highly Conductive 3D Printable Materials for 3D Structural Electronics. ACS Appl. Electron. Mater. 2021, 3, 2423–2433. [Google Scholar] [CrossRef]
- Li, W.; Li, F.; Li, H.; Su, M.; Gao, M.; Li, Y.; Su, D.; Zhang, X.; Song, Y. Flexible Circuits and Soft Actuators by Printing Assembly of Graphene. ACS Appl. Mater. Interfaces 2016, 8, 12369–12376. [Google Scholar] [CrossRef]
- Jinsoo, N.; Minhun, J.; Kyunghwan, J.; Gwangyong, L.; Soyeon, L.; Daae, K.; Vivek, S.; Gyoujin, C. All Printed Edge-Triggered Register Using Single Walled Carbon Nanotube-Based Thin Film Transistor. J. Nanosci. Nanotechnol. 2012, 12, 4261–4264. [Google Scholar]
- Jansson, E.; Lyytikainen, J.; Tanninen, P.; Eiroma, K.; Leminen, V.; Immonen, K.; Hakola, L. Suitability of Paper-Based Substrates for Printed Electronics. Materials 2022, 15, 957. [Google Scholar] [CrossRef]
- Frutiger, A.; Muth, J.T.; Vogt, D.M.; Menguc, Y.; Campo, A.; Valentine, A.D.; Walsh, C.J.; Lewis, J.A. Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Adv. Mater. 2015, 27, 2440–2446. [Google Scholar] [CrossRef]
- Chung, S.; Jang, M.; Ji, S.-B.; Im, H.; Seong, N.; Ha, J.; Kwon, S.-K.; Kim, Y.-H.; Yang, H.; Hong, Y. Flexible High-Performance All-Inkjet-Printed Inverters: Organo-Compatible and Stable Interface Engineering. Adv. Mater. 2013, 25, 4773–4777. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Tetik, H.; Cheng, J.; Ding, W.; Guo, H.; Tao, X.; Zhou, N.; Zi, Y.; Wu, Z.; Wu, H.; et al. Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator. Adv. Funct. Mater. 2019, 29, 1901102. [Google Scholar] [CrossRef]
- Li, W.W.; Zhang, H.R.; Kagita, S.; Shamim, A. All Screen-Printed, Polymer-Nanowire Based Foldable Electronics for mm-Wave Applications. Adv. Mater. Technol. 2021, 6, 2100525. [Google Scholar] [CrossRef]
- Bartzsch, M.; Kempa, H.; Otto, M.; Hubler, A.; Zielke, D. Device and circuit simulation of printed polymer electronics. Org. Electron. 2007, 8, 431–438. [Google Scholar] [CrossRef]
- Sung, D.; de la Fuente Vornbrock, A.; Subramanian, V. Scaling and Optimization of Gravure-Printed Silver Nanoparticle Lines for Printed Electronics. IEEE Trans. Components Packag. Technol. 2010, 33, 105–114. [Google Scholar] [CrossRef]
- Roshanghias, A.; Krivec, M.; Baumgart, M. Sintering strategies for ink-jet printed metallic traces in 3D printed electronics. Flex. Print. Electron. 2017, 2, 045002. [Google Scholar] [CrossRef]
- Skarzynski, K.; Krzeminski, J.; Jakubowska, M.; Sloma, M. Highly conductive electronics circuits from aerosol jet printed silver inks. Sci. Rep. 2021, 11, 18141. [Google Scholar] [CrossRef]
- Lazarus, N.; Tsang, H.H. 3-D Printing Structural Electronics With Conductive Filaments. IEEE Trans. Components Packag. Manuf. Technol. 2020, 10, 1965–1972. [Google Scholar] [CrossRef]
- Feng, S.; Tian, Z.; Wang, J.; Cao, S.; Kong, D. Laser sintering of Zn microparticles and its application in printable biodegradable electronics. Adv. Electron. Mater. 2019, 5, 1800693. [Google Scholar] [CrossRef]
- Jiang, T.; Meng, X.; Zhou, Z.; Wu, Y.; Tian, Z.; Liu, Z.; Lu, G.; Eginlidil, M.; Yu, H.-D.; Liu, J.; et al. Highly flexible and degradable memory electronics comprised of all-biocompatible materials. Nanoscale 2021, 13, 724–729. [Google Scholar] [CrossRef]
- Shin, E.; Yoo, J.; Yoo, G.; Kim, Y.-J.; Kim, Y.S. Eco-friendly cross-linked polymeric dielectric material based on natural tannic acid. Chem. Eng. J. 2019, 358, 170–175. [Google Scholar] [CrossRef]
- Le, T.-S.D.; Lee, Y.A.; Nam, H.K.; Jang, K.Y.; Yang, D.; Kim, B.; Yim, K.; Kim, S.-W.; Yoon, H.; Kim, Y.-J. Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses. Adv. Funct. Mater. 2022, 32, 2107768. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Okada, Y.; Sakai, M.; Suzuki, M.; Tomiya, H. Solvent-free Printing of Organic Semiconductor, Insulator, Metal, and Conductor Particles on Flexible Substrates. TechConnect Briefs 2019, 2019, 361–364. [Google Scholar]
- Sakai, M.; Koh, T.; Toyoshima, K.; Nakamori, K.; Okada, Y.; Yamauchi, H.; Sadamitsu, Y.; Shinamura, S.; Kudo, K. Solvent-Free Toner Printing of Organic Semiconductor Layer in Flexible Thin-Film Transistors. Phys. Rev. Appl. 2017, 8, 014001. [Google Scholar] [CrossRef]
- Rasband, W.S. ImageJ; U. S. National Institutes of Health: Bethesda, MD, USA, 1997–2012. Available online: http://imagej.nih.gov/ij/ (accessed on 29 August 2022).
- Schneider, C.A.; Rasb, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Chen, C.; Suganuma, K. Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size. Mater. Des. 2019, 162, 311–321. [Google Scholar] [CrossRef]
- Chen, C.; Yeom, J.; Choe, C.; Liu, G.; Gao, Y.; Zhang, Z.; Zhang, B.; Kim, D.; Suganuma, K. Necking growth and mechanical properties of sintered Ag particles with different shapes under air and N2 atmosphere. J. Mater. Sci. 2019, 54, 13344–13357. [Google Scholar] [CrossRef]
- Moon, K.S.; Dong, H.; Maric, R.; Pothukuchi, S.; Hunt, A.; Li, Y.; Wong, C.P. Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 2005, 34, 168–175. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Cho, T.-S. Sintering Behaviors of Ag Nanopowders with Different Particle Sizes: A Real-Time Synchrotron X-ray Scattering Study. J. Nanosci. Nanotechnol. 2017, 17, 7799–7803. [Google Scholar] [CrossRef]
- Yeom, J.; Nagao, S.; Chen, C.; Sugahara, T.; Zhang, H.; Choe, C.; Li, C.-F.; Suganuma, K. Ag particles for sinter bonding: Flakes or spheres? Appl. Phys. Lett. 2019, 14, 253103. [Google Scholar] [CrossRef]
- Ryu, K.; Moon, Y.J.; Park, K.; Hwang, J.-Y.; Moon, S.-J. Electrical Property and Surface Morphology of Silver Nanoparticles After Thermal Sintering. J. Electron. Mater. 2016, 45, 312–321. [Google Scholar] [CrossRef]
- Jiu, J.; Zhang, H.; Koga, S.; Nagao, S.; Izumi, Y.; Suganuma, K. Simultaneous synthesis of nano and micro-Ag particles and their application as a die-attachment material. J. Mater. Sci. Mater. Electron. 2015, 26, 7183–7191. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lee, J.-H. Effect of compression pressure on strength of low-temperature sinter bonding produced using silver formate. Powder Metall. 2021, 64, 235–240. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Shearwood, C.; Xu, B.; Yu, L.G.; Khor, K.A. Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 2010, 21, 115707. [Google Scholar] [CrossRef] [PubMed]
- Alarifi, H.A.; Ozdogan, C.; Hu, A.; Yavuz, M.; Zhou, Y. Molecular Dynamics Simulation of Sintering and Surface Premelting of Silver Nanoparticles. Mater. Trans. 2013, 54, 884–889. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawamura, F.; Ngu, C.Y.; Hanazaki, R.; Kozuki, K.; Kado, S.; Sakai, M.; Kudo, K. Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics. Appl. Sci. 2022, 12, 9616. https://doi.org/10.3390/app12199616
Sawamura F, Ngu CY, Hanazaki R, Kozuki K, Kado S, Sakai M, Kudo K. Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics. Applied Sciences. 2022; 12(19):9616. https://doi.org/10.3390/app12199616
Chicago/Turabian StyleSawamura, Fumiya, Chen Yi Ngu, Raiki Hanazaki, Kaito Kozuki, Sayaka Kado, Masatoshi Sakai, and Kazuhiro Kudo. 2022. "Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics" Applied Sciences 12, no. 19: 9616. https://doi.org/10.3390/app12199616
APA StyleSawamura, F., Ngu, C. Y., Hanazaki, R., Kozuki, K., Kado, S., Sakai, M., & Kudo, K. (2022). Dry Printing of Ag–Ni Conductive Particles Using Toner-Type Printed Electronics. Applied Sciences, 12(19), 9616. https://doi.org/10.3390/app12199616