Analysis of Influencing Characteristics of Biochars for Ammonium Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Study and Data Selection
2.2. Expectation Maximization
- Begin with an initial estimate ;
- For every reference work , impute the missing data with the mean of the conditional distribution , explicitly:
- Compute an updated estimate of the distribution parameters . Specifically, if with we denote the data from reference work with imputed data from the parameters in step , then
- Repeat Steps 2 and 3 until convergence.
3. Results and Discussion
- a sequence of five wood experiments showing increasing adsorption capacity;
- a sequence of five agricultural waste experiments showing increasing adsorption capacity;
- a sequence of five wood experiments showing increasing adsorption capacity;
- a group of 10 agricultural waste experiments showing increasing adsorption capacity.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuntke, P.; Śmiech, K.M.; Bruning, H.; Zeeman, G.; Saakes, M.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Ammonium Recovery and Energy Production from Urine by a Microbial Fuel Cell. Water Res. 2012, 46, 2627–2636. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Li, P.; Yan, X. Runoff Concentration and Load of Nitrogen and Phosphorus from a Residential Area in an Intensive Agricultural Watershed. Sci. Total Environ. 2013, 458–460, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Dube, P.J.; Vanotti, M.B.; Szogi, A.A.; García-González, M.C. Enhancing Recovery of Ammonia from Swine Manure Anaerobic Digester Effluent Using Gas-Permeable Membrane Technology. Waste Manag. 2016, 49, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Beckinghausen, A.; Odlare, M.; Thorin, E.; Schwede, S. From Removal to Recovery: An Evaluation of Nitrogen Recovery Techniques from Wastewater. Appl. Energy 2020, 263, 114616. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Env. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar Adsorbed Ammonia Is Bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Booker, N.A.; Cooney, E.L.; Priestley, A.J. Ammonia Removal from Sewage Using Natural Australian Zeolite. Water Sci. Technol. 1996, 34, 17–24. [Google Scholar] [CrossRef]
- Beckinghausen, A.; Reynders, J.; Merckel, R.; Wu, Y.W.; Marais, H.; Schwede, S. Post-Pyrolysis Treatments of Biochars from Sewage Sludge and A. Mearnsii for Ammonia (NH4-n) Recovery. Appl. Energy 2020, 271, 115212. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and Ammonium Sorption Capacity of Biochar and Hydrochar from Different Wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Fidel, R.B.; Laird, D.A.; Spokas, K.A. Sorption of Ammonium and Nitrate to Biochars Is Electrostatic and PH-Dependent. Sci. Rep. 2018, 8, 17627. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.C.; Webber, J.B.W.; Ogbonnaya, U.O. Characteristics of Biochar Porosity by NMR and Study of Ammonium Ion Adsorption. J. Anal. Appl. Pyrolysis 2019, 143, 104687. [Google Scholar] [CrossRef]
- Gao, F.; Xue, Y.; Deng, P.; Cheng, X.; Yang, K. Removal of Aqueous Ammonium by Biochars Derived from Agricultural Residuals at Different Pyrolysis Temperatures. Chem. Speciat. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, Y.; Gao, F.; Cheng, X.; Yang, K. Removal of Ammonium from Aqueous Solutions Using Alkali-Modified Biochars. Chem. Speciat. Bioavailab. 2016, 28, 26–32. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Li, T.; Zhao, F.; He, Z.; Zhao, H.; Yang, X.; Wang, H.; Zhao, J.; Rafiq, M.T. Sorption of Ammonium and Phosphate from Aqueous Solution by Biochar Derived from Phytoremediation Plants. J. Zhejiang Univ. Sci. B 2013, 14, 1152–1161. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef]
- Sarkhot, D.V.; Ghezzehei, T.A.; Berhe, A.A. Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent. J. Environ. Qual. 2013, 42, 1545–1554. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Mahmood, I.B. Recovery of NH4+by Corn Cob Produced Biochars and Its Potential Application as Soil Conditioner. Front. Environ. Sci. Eng. 2014, 8, 825–834. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kipkemoi Kirui, W.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Shen, F.; Yang, G.; Zhang, Y.; Zeng, Y.; Wang, L.; Xiao, H.; Deng, S. Biochar Produced from Oak Sawdust by Lanthanum (La)-Involved Pyrolysis for Adsorption of Ammonium (NH4+), Nitrate (NO3−), and Phosphate (PO43−). Chemosphere 2015, 119, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Hao, H.; Zhang, C.; He, Z.; Yang, X. Capacity and Mechanisms of Ammonium and Cadmium Sorption on Different Wetland-Plant Derived Biochars. Sci. Total Environ. 2016, 539, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Xia, D.; Li, H.; Ke, L.; Wang, Y.; Wang, H.; Zheng, Y.; Li, Q. Effectiveness and Mechanisms of Ammonium Adsorption on Biochars Derived from Biogas Residues. RSC Adv. 2016, 6, 88373–88381. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q. Sustainable Mechanisms of Biochar Derived from Brewers’ Spent Grain and Sewage Sludge for Ammonia–Nitrogen Capture. J. Clean. Prod. 2016, 112, 3927–3934. [Google Scholar] [CrossRef]
- Vu, T.M.; Doan, D.P.; Van, H.T.; Nguyen, T.V.; Vigneswaran, S.; Ngo, H.H. Removing Ammonium from Water Using Modified Corncob-Biochar. Sci. Total Environ. 2017, 579, 612–619. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, Z.; Xu, X.; Dai, M.; Guo, R. Characterization and Ammonia Adsorption of Biochar Prepared from Distillers’ Grains Anaerobic Digestion Residue with Different Pyrolysis Temperatures. J. Chem. Technol. Biotechnol. 2018, 93, 198–206. [Google Scholar] [CrossRef]
- Shang, L.; Xu, H.; Huang, S.; Zhang, Y. Adsorption of Ammonium in Aqueous Solutions by the Modified Biochar and Its Application as an Effective N-Fertilizer. Water Air Soil Pollut. 2018, 229, 320. [Google Scholar] [CrossRef]
- Yang, H.I.; Lou, K.; Rajapaksha, A.U.; Ok, Y.S.; Anyia, A.O.; Chang, S.X. Adsorption of Ammonium in Aqueous Solutions by Pine Sawdust and Wheat Straw Biochars. Environ. Sci. Pollut. Res. 2018, 25, 25638–25647. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, B.; Wang, R.; Zhao, Z. Phosphate and Ammonium Adsorption of Sesame Straw Biochars Produced at Different Pyrolysis Temperatures. Env. Sci. Pollut. Res. 2018, 25, 4320–4329. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, R.; Zhao, Z. Application of Mg–Al-Modified Biochar for Simultaneous Removal of Ammonium, Nitrate, and Phosphate from Eutrophic Water. J. Clean. Prod. 2018, 176, 230–240. [Google Scholar] [CrossRef]
- Gong, H.; Tan, Z.; Zhang, L.; Huang, Q. Preparation of Biochar with High Absorbability and Its Nutrient Adsorption–Desorption Behaviour. Sci. Total Environ. 2019, 694, 133728. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, G.; Shi, G.; Zhang, M.; Zhang, J.; He, J.; Xiao, Y.; Tian, D.; Zhang, Y.; Deng, S.; et al. The Characterization of Biochars Derived from Rice Straw and Swine Manure, and Their Potential and Risk in N and P Removal from Water. J. Environ. Manag. 2019, 245, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Takaya, C.; Parmar, K.; Fletcher, L.; Ross, A. Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia. Agriculture 2019, 9, 16. [Google Scholar] [CrossRef]
- Tang, Y.; Alam, M.S.; Konhauser, K.O.; Alessi, D.S.; Xu, S.; Tian, W.; Liu, Y. Influence of Pyrolysis Temperature on Production of Digested Sludge Biochar and Its Application for Ammonium Removal from Municipal Wastewater. J. Clean. Prod. 2019, 209, 927–936. [Google Scholar] [CrossRef]
- Xu, D.; Cao, J.; Li, Y.; Howard, A.; Yu, K. Effect of Pyrolysis Temperature on Characteristics of Biochars Derived from Different Feedstocks: A Case Study on Ammonium Adsorption Capacity. Waste Manag. 2019, 87, 652–660. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C.; Zhang, Y.; Ma, C. Food Waste Based Biochars for Ammonia Nitrogen Removal from Aqueous Solutions. Bioresour. Technol. 2019, 292, 121927. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Ren, H. Removal of Ammonium and Phosphate from Water by Mg-Modified Biochar: Influence of Mg Pretreatment and Pyrolysis Temperature. BioResources 2019, 14, 6203–6218. [Google Scholar]
- Aghoghovwia, M.P.; Hardie, A.G.; Rozanov, A.B. Characterisation, Adsorption and Desorption of Ammonium and Nitrate of Biochar Derived from Different Feedstocks. Environ. Technol. 2020, 43, 774–787. [Google Scholar] [CrossRef]
- Chandra, S.; Medha, I.; Bhattacharya, J. Potassium-Iron Rice Straw Biochar Composite for Sorption of Nitrate, Phosphate, and Ammonium Ions in Soil for Timely and Controlled Release. Sci. Total Environ. 2020, 712, 136337. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, S.; Dong, C.; Meng, Z.; Wang, X. Competitive Adsorption Behaviour and Mechanisms of Cadmium, Nickel and Ammonium from Aqueous Solution by Fresh and Ageing Rice Straw Biochars. Bioresour. Technol. 2020, 303, 122853. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C.; Zhang, Y.; Ma, C. Comparison Study on the Ammonium Adsorption of the Biochars Derived from Different Kinds of Fruit Peel. Sci. Total Environ. 2020, 707, 135544. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Zhang, G.; Zhi, Y.; Yang, D.; Lai, X.; Ren, T. Characterization of Acid-Aged Biochar and Its Ammonium Adsorption in an Aqueous Solution. Materials 2020, 13, 2270. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, H.; Tu, Z.; Li, R.; Li, S.; Xu, Z.; Zhang, Z. Enhanced Removal of Phosphate and Ammonium by MgO-Biochar Composites with NH3·H2O Hydrolysis Pretreatment. Env. Sci. Pollut. Res 2020, 27, 7493–7503. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, F.; Zhang, D.; Yi, W.; Liu, Y. Effects of Acid Modification on the Structure and Adsorption NH4+-N Properties of Biochar. Renew. Energy 2021, 169, 1343–1350. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, F.; Liu, Z.; Ai, L. Removal of Ammonia Nitrogen and Phosphorus by Biochar Prepared from Sludge Residue after Rusty Scrap Iron and Reduced Iron Powder Enhanced Fermentation. J. Environ. Manag. 2021, 282, 111970. [Google Scholar] [CrossRef]
- Phuong, N.V.; Hoang, N.K.; Luan, L.V.; Tan, L.V. Evaluation of NH 4 + Adsorption Capacity in Water of Coffee Husk-Derived Biochar at Different Pyrolysis Temperatures. Int. J. Agron. 2021, 2021, 1463814. [Google Scholar] [CrossRef]
- Li, X.; Shi, J. Simultaneous Adsorption of Tetracycline, Ammonium and Phosphate from Wastewater by Iron and Nitrogen Modified Biochar: Kinetics, Isotherm, Thermodynamic and Mechanism. Chemosphere 2022, 293, 133574. [Google Scholar] [CrossRef]
- Wang, S.; Ai, S.; Nzediegwu, C.; Kwak, J.-H.; Islam, M.S.; Li, Y.; Chang, S.X. Carboxyl and Hydroxyl Groups Enhance Ammonium Adsorption Capacity of Iron (III) Chloride and Hydrochloric Acid Modified Biochars. Bioresour. Technol. 2020, 309, 123390. [Google Scholar] [CrossRef]
- Munar-Florez, D.A.; Varón-Cardenas, D.A.; Ramírez-Contreras, N.E.; García-Núñez, J.A. Adsorption of Ammonium and Phosphates by Biochar Produced from Oil Palm Shells: Effects of Production Conditions. Results Chem. 2021, 3, 100119. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. 1977, 39, 1–38. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; ISBN 978-1-119-01356-3. [Google Scholar]
- Roweis, S. EM Algorithms for PCA and SPCA. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1997; Volume 10. [Google Scholar]
- Malan, L.; Smuts, C.M.; Baumgartner, J.; Ricci, C. Missing Data Imputation via the Expectation-Maximization Algorithm Can Improve Principal Component Analysis Aimed at Deriving Biomarker Profiles and Dietary Patterns. Nutr. Res. 2020, 75, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Van Ginkel, J.R.; Kroonenberg, P.M.; Kiers, H.A.L. Missing Data in Principal Component Analysis of Questionnaire Data: A Comparison of Methods. J. Stat. Comput. Simul. 2014, 84, 2298–2315. [Google Scholar] [CrossRef]
- Liang, P.; Yu, H.; Huang, J.; Zhang, Y.; Cao, H. The Review on Adsorption and Removing Ammonia Nitrogen with Biochar on Its Mechanism. MATEC Web Conf. 2016, 67, 07006. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar Modification to Enhance Sorption of Inorganics from Water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-Based Engineered Composites for Sorptive Decontamination of Water: A Review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating Biochar and Its Modifications for the Removal of Ammonium, Nitrate, and Phosphate in Water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-Test? On Assumptions for Hypothesis Tests and Multiple Interpretations of Decision Rules. Stat. Surv. 2010, 4, 1–39. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
Influencing Factor | [55] | [56] | [57] | [10] | [58] |
Dosage of biochar | x | ||||
pH value of solution | x | x | x | ||
Biochar particle size | x | x | |||
Ammonium concentration in solution | x | x | |||
Contact time | x | ||||
Surface Area (BET *) | x | x | x | x | x |
Pyrolysis temperature | x | x | x | x | |
Competing ions (purity of solution) | x | x | x | ||
Cation exchange capacity (CEC) | x | ||||
Surface functional groups | x | x | x | x | |
Ambient temperature | x | x |
Influencing Factor | Available Observations (Out of 210) |
---|---|
Dosage of biochar | 210 |
pH value of solution | 138 |
Biochar particle size | 192 |
Ammonium concentration in solution | 210 |
Residence time | 198 |
Surface Area (BET) | 163 |
Pyrolysis temperature | 205 |
Cation exchange capacity (CEC) | 57 |
Pyr. Temp. (C) | Part. Size (mm) | pH | NH4+ Conc. (mg/L) | Contact Time (h) | BET SA (m2/g) | Biochar Dose. (g/mL) | Ad. Cap. (mg/g) | % of Max Ads Cap | Study | Symbol in Figure 5 | Material |
---|---|---|---|---|---|---|---|---|---|---|---|
600 | 0.25 | 8.15 | 250 | 20 | 10.995 | 0.02 | 9.14 | 73 | [20] | p | Rice husks |
600 | 0.25 | 8.15 | 500 | 20 | 10.995 | 0.02 | 17.18 | 69 | [20] | p | Rice husks |
600 | 0.25 | 8.15 | 750 | 20 | 10.995 | 0.02 | 25.08 | 67 | [20] | p | Rice husks |
600 | 0.25 | 8.15 | 1000 | 20 | 10.995 | 0.02 | 30.99 | 62 | [20] | p | Rice husks |
600 | 0.25 | 8.15 | 1400 | 20 | 10.995 | 0.02 | 37.63 | 54 | [20] | p | Rice husks |
600 | 0.25 | 7.0 | 1000 | 20 | 10.995 | 0.02 | 37.11 | 74 | [20] | q | Rice husks |
550 | - | - | 1026 | 12 | 6.16 | 0.004 | 2.1 | 1 | [44] | q | Rice husks |
550 | - | - | 1026 | 12 | 106.00 | 0.004 | 3.00 | 1 | [44] | q | Rice husks |
600 | 0.059 | 7.2 | 100 | 4.3 | 285.5 | 0.0008 | 78.67 | 63 | [47] | É | Walnut shells |
600 | 0.059 | 7.2 | 100 | 4.3 | 456.3 | 0.0008 | 68.78 | 55 | [47] | É | Walnut shells |
600 | 0.059 | 7.2 | 100 | 4.3 | 536.5 | 0.0008 | 80.16 | 64 | [47] | É | Walnut shells |
600 | 0.059 | 7.2 | 100 | 4.3 | 967.1 | 0.0008 | 108.4 | 87 | [47] | É | Walnut shells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenk, A.; Ivan, J.-P.A.; Schwede, S.; Odlare, M. Analysis of Influencing Characteristics of Biochars for Ammonium Adsorption. Appl. Sci. 2022, 12, 9487. https://doi.org/10.3390/app12199487
Shenk A, Ivan J-PA, Schwede S, Odlare M. Analysis of Influencing Characteristics of Biochars for Ammonium Adsorption. Applied Sciences. 2022; 12(19):9487. https://doi.org/10.3390/app12199487
Chicago/Turabian StyleShenk, Aubrey, Jean-Paul A. Ivan, Sebastian Schwede, and Monica Odlare. 2022. "Analysis of Influencing Characteristics of Biochars for Ammonium Adsorption" Applied Sciences 12, no. 19: 9487. https://doi.org/10.3390/app12199487
APA StyleShenk, A., Ivan, J.-P. A., Schwede, S., & Odlare, M. (2022). Analysis of Influencing Characteristics of Biochars for Ammonium Adsorption. Applied Sciences, 12(19), 9487. https://doi.org/10.3390/app12199487