Robotics and Vibration Mechanics
1. Robotics and Vibration Mechanics
2. Special Issue
3. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cleghorn, W.; Fenton, R.; Tabarrok, B. Optimum design of high-speed flexible mechanisms. Mech. Mach. Theory 1981, 16, 399–406. [Google Scholar] [CrossRef]
- Shabana, A.A. Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1997, 1, 189–222. [Google Scholar] [CrossRef]
- Gerstmayr, J. The absolute coordinate formulation with elasto-plastic deformations. Multibody Syst. Dyn. 2004, 12, 363–383. [Google Scholar] [CrossRef]
- Shabana, A.A. An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies; Technical Report; Department of Mechanical Engineering, University of Illinois at Chicago: Chicago, IL, USA, 1996. [Google Scholar]
- Vidoni, R.; Gasparetto, A.; Giovagnoni, M. Design and implementation of an ERLS-based 3-D dynamic formulation for flexible-link robots. Robot. Comput.-Integr. Manuf. 2013, 29, 273–282. [Google Scholar] [CrossRef]
- Boscariol, P.; Gallina, P.; Gasparetto, A.; Giovagnoni, M.; Scalera, L.; Vidoni, R. Evolution of a dynamic model for flexible multibody systems. In Advances in Italian Mechanism Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 533–541. [Google Scholar]
- Vidoni, R.; Scalera, L.; Gasparetto, A. 3-D ERLS based dynamic formulation for flexible-link robots: Theoretical and numerical comparison between the finite element method and the component mode synthesis approaches. Int. J. Mech. Control. 2018, 19, 39–50. [Google Scholar]
- Howell, L.L. Compliant mechanisms. In 21st Century Kinematics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 189–216. [Google Scholar]
- Braun, S.; Ram, Y. Modal modification of vibrating systems: Some problems and their solutions. Mech. Syst. Signal Process. 2001, 15, 101–119. [Google Scholar] [CrossRef]
- Belotti, R.; Palomba, I.; Wehrle, E.; Vidoni, R. An Approximation-Based Design Optimization Approach to Eigenfrequency Assignment for Flexible Multibody Systems. Appl. Sci. 2021, 11, 11558. [Google Scholar] [CrossRef]
- Richiedei, D.; Tamellin, I. Active approaches to vibration absorption through antiresonance assignment: A comparative study. Appl. Sci. 2021, 11, 1091. [Google Scholar] [CrossRef]
- Barreto, J.P.; Schöler, F.F.; Corves, B. The concept of natural motion for pick and place operations. In New Advances in Mechanisms, Mechanical Transmissions and Robotics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 89–98. [Google Scholar]
- Scalera, L.; Palomba, I.; Wehrle, E.; Gasparetto, A.; Vidoni, R. Natural motion for energy saving in robotic and mechatronic systems. Appl. Sci. 2019, 9, 3516. [Google Scholar] [CrossRef]
- Carabin, G.; Scalera, L.; Wongratanaphisan, T.; Vidoni, R. An energy-efficient approach for 3D printing with a Linear Delta Robot equipped with optimal springs. Robot. Comput.-Integr. Manuf. 2021, 67, 102045. [Google Scholar] [CrossRef]
- Kashiri, N.; Spyrakos-Papastavridis, E.; Caldwell, D.G.; Tsagarakis, N.G. Exploiting the natural dynamics of compliant joint robots for cyclic motions. In Proceedings of the 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 28–31 August 2017; pp. 676–681. [Google Scholar]
- Benosman, M.; Le Vey, G. Control of flexible manipulators: A survey. Robotica 2004, 22, 533–545. [Google Scholar] [CrossRef]
- Luca, A.D. Trajectory control of flexible manipulators. In Control Problems in Robotics and Automation; Springer: Berlin/Heidelberg, Germany, 1998; pp. 83–104. [Google Scholar]
- Rosyid, A.; El-Khasawneh, B. Multibody Dynamics of Nonsymmetric Planar 3PRR Parallel Manipulator with Fully Flexible Links. Appl. Sci. 2020, 10, 4816. [Google Scholar] [CrossRef]
- Rojas, R.A.; Wehrle, E.; Vidoni, R. A multicriteria motion planning approach for combining smoothness and speed in collaborative assembly systems. Appl. Sci. 2020, 10, 5086. [Google Scholar] [CrossRef]
- Fehr, J.; Schmid, P.; Schneider, G.; Eberhard, P. Modeling, simulation, and vision-/MPC-based control of a PowerCube serial robot. Appl. Sci. 2020, 10, 7270. [Google Scholar] [CrossRef]
- Vocetka, M.; Huňady, R.; Hagara, M.; Bobovskỳ, Z.; Kot, T.; Krys, V. Influence of the Approach Direction on the Repeatability of an Industrial Robot. Appl. Sci. 2020, 10, 8714. [Google Scholar] [CrossRef]
- Tommasino, D.; Cipriani, G.; Doria, A.; Rosati, G. Effect of end-effector compliance on collisions in robotic teleoperation. Appl. Sci. 2020, 10, 9077. [Google Scholar] [CrossRef]
- Boscariol, P.; Scalera, L.; Gasparetto, A. Nonlinear control of multibody flexible mechanisms: A model-free approach. Appl. Sci. 2021, 11, 1082. [Google Scholar] [CrossRef]
- Cocuzza, S.; Doria, A.; Reis, M. Vibration-based locomotion of an amphibious robot. Appl. Sci. 2021, 11, 2212. [Google Scholar] [CrossRef]
- Pridie, A.C.; Antonya, C. The theoretical study of an interconnected suspension system for a formula student car. Appl. Sci. 2021, 11, 5507. [Google Scholar] [CrossRef]
- Essomba, T.; Sandoval, J.; Laribi, M.A.; Wu, C.T.; Breque, C.; Zeghloul, S.; Richer, J.P. Torque reduction of a reconfigurable spherical parallel mechanism based on craniotomy experimental data. Appl. Sci. 2021, 11, 6534. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparetto, A.; Scalera, L.; Palomba, I. Robotics and Vibration Mechanics. Appl. Sci. 2022, 12, 9478. https://doi.org/10.3390/app12199478
Gasparetto A, Scalera L, Palomba I. Robotics and Vibration Mechanics. Applied Sciences. 2022; 12(19):9478. https://doi.org/10.3390/app12199478
Chicago/Turabian StyleGasparetto, Alessandro, Lorenzo Scalera, and Ilaria Palomba. 2022. "Robotics and Vibration Mechanics" Applied Sciences 12, no. 19: 9478. https://doi.org/10.3390/app12199478
APA StyleGasparetto, A., Scalera, L., & Palomba, I. (2022). Robotics and Vibration Mechanics. Applied Sciences, 12(19), 9478. https://doi.org/10.3390/app12199478