Quantitative Microbial Risk Assessment of North Carolina Type 2 Reclaimed Water for Agricultural Reuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sampling and Microbial Analysis
2.2. Statistical Analysis
2.3. Exposure Assessment
2.4. Exposure Scenarios
2.5. Irrigation Method and Reclaimed Water Quality
3. Results
3.1. Dose-Response Modeling
3.2. Risk Characterization
3.3. Uncertainty Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Asano, T. Water from (waste)water—The dependable water resource. Water Sci. Technol. 2002, 45, 24–33. [Google Scholar]
- Jiménez, B. Irrigation in developing countries using wastewater. Int. Rev. Environ. Strateg. 2006, 6, 229–250. [Google Scholar]
- North Caroloina Department of Natural Resources. 15A North Carolina Administrative Code 02U-Reclaimed Water. 2011. Available online: http://reports.oah.state.nc.us/ncac/title%2015a%20-%20environmental%20quality/chapter%2002%20-%20environmental%20management/subchapter%20u/subchapter%20u%20rules.html (accessed on 1 January 2015).
- North Caroloina Department of Natural Resources. 18C Water Supplies, Section .0100 Protection of Public Water Supplies. 2014. Available online: http://reports.oah.state.nc.us/ncac/title%2015a%20-%20environmental%20quality/chapter%2018%20-%20environmental%20health/subchapter%20c/subchapter%20c%20rules.pdf (accessed on 1 January 2015).
- WHO. W.H.O. Guidelines for Safe Use of Wastewater Excreta and Greywater, Wastewater Use in Agriculture; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Petterson, S.R.; Signor, R.S.; Ashbolt, N.J. Incorporating method recovery uncertainties in stochastic estimates of raw water protozoan concentrations for QMRA. J. Water Health 2006, 5, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.J.; Stagnitti, F.; Premier, R.; Boland, A.M.; Hale, G. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl. Environ. Microbiol. 2006, 72, 3284–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oron, G.; Gillerman, L.; Lael, A.; Manor, Y.; Braude, E.; Bick, A. Minimizing health risks during secondary effluent application via subsurface drip irrigation. Water Sci. Technol. 2010, 62, 2330–2337. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.S.; Casanova, L.M.; Simmons, O.D., 3rd; Sobsey, M.D. Tertiary treatment and dual disinfection to improve microbial quality of reclaimed water for potable and non-potable reuse: A case study of facilities in North Carolina. Sci. Total Environ. 2018, 630, 379–388. [Google Scholar] [CrossRef]
- Bailey, E.S.; Hopkins, M.; Casanova, L.; Sobsey, M.D. Evaluating Fecal Indicator and Pathogen Relationships in Sewage Impacted Surface Waters to Blend with Reclaimed Water for Potable Reuse in North Carolina. Pathogens 2021, 10, 1603. [Google Scholar] [CrossRef]
- Hill, V.R.; Kahler, A.M.; Jothikumar, N.; Johnson, T.B.; Hahn, D.; Cromeans, T.L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl. Environ. Microbiol. 2007, 73, 4218–4225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polaczyk, A.L.; Narayanan, J.; Cromeans, T.L.; Hahn, D.; Roberts, J.M.; Amburgey, J.E.; Hill, V.R. Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. J. Microbiol. Methods 2008, 73, 92–99. [Google Scholar] [CrossRef]
- Yamamoto, K.R.; Alberts, B.M.; Benzinger, R.; Lawhorne, L.; Treiber, G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 1970, 40, 734–744. [Google Scholar] [CrossRef]
- Loisy, F.; Atmar, R.L.; Guillon, P.; Le Cann, P.; Pommepuy, M.; Le Guyader, F.S. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 2005, 123, 1–7. [Google Scholar] [CrossRef]
- Jothikumar, N.; Cromeans, T.L.; Hill, V.R.; Lu, X.; Sobsey, M.D.; Erdman, D.D. Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Appl. Environ. Microbiol. 2005, 71, 3131–3136. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Method Cryptosporidium and Giardia in Water by Filtration/IMS/FA; Office of Water, Ed.; United States Environmental Protection Agency: Washington, DC, USA, 2012.
- U.S. Environmental Protection Agency. Exposure Factors Handbook: 2011 Edition; Office of Research and Development′s National Center for Environmental Assessment, Ed.; Environmental Protection Ageny: Washington, DC, USA, 2011.
- Van Ginneken, M.; Oron, G. Risk assessment of consuming agricultural products irrigated with reclaimed wastewater: An exposure model. Water Resour. Res. 2010, 36, 2691–2699. [Google Scholar] [CrossRef]
- Asano, T.; Leong, L.Y.C.; Rigby, M.G.; Sakaji, R.H. Evaluation of the California Wastewater Reclamation Criteria using enteric virus monitoring data. Water Sci. Technol. 1992, 26, 1513–1524. [Google Scholar] [CrossRef]
- Reinoso, R.; Torres, L.A.; Becares, E. Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater. Sci. Total Environ. 2008, 395, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Hammad, Y.Y.; Manocha, Y. Principles of exposure assessment. In Environmental Medicine; Brooks, S., Ed.; Mosby Year Book: St. Louis, MO, USA, 1995. [Google Scholar]
- Oron, G.; DeMalach, Y.; Hoffman, Z.; Manor, Y. Effluent Reuse by Trickle Irrigation. Water Sci. Technol. 1991, 24, 103–108. [Google Scholar] [CrossRef]
- Couch, R.B.; Cate, T.R.; Douglas, R.G., Jr.; Gerone, P.J.; Knight, V. Effect of route of inoculation on experimental respiratory viral disease in volunteers and evidence for airborne transmission. Bacteriol. Rev. 1966, 30, 517–529. [Google Scholar] [CrossRef]
- DuPont, H.L.; Chappell, C.L.; Sterling, C.R.; Okhuysen, P.C.; Rose, J.B.; Jakubowski, W. The infectivity of Cryptosporidium parvum in healthy volunteers. N. Engl. J. Med. 1995, 332, 855–859. [Google Scholar] [CrossRef]
- Rose, J.B.; Haas, C.N.; Regli, S. Risk assessment and control of waterborne giardiasis. Am. J. Public Health 1991, 81, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Meynell, G.G.; Meynell, E.W. The growth of micro-organisms in vivo with particular reference to the relation between dose and latent period. Epidemiol. Infect. 1958, 56, 323–346. [Google Scholar] [CrossRef] [Green Version]
- Haas, C.N. Estimation of risk due to low doses of microorganisms: A comparison of alternative methodologies. Am. J. Epidemiol. 1983, 118, 573–582. [Google Scholar] [CrossRef] [PubMed]
- WHO. W.H.O. Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Amha, Y.M.; Kumaraswamy, R.; Ahmad, F. A probabilistic QMRA of Salmonella in direct agricultural reuse of treated municipal wastewater. Water Sci. Technol. 2015, 71, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Mota, A.; Mena, K.D.; Soto-Beltran, M.; Tarwater, P.M.; Chaidez, C. Risk assessment of cryptosporidium and giardia in water irrigating fresh produce in Mexico. J. Food Prot. 2009, 72, 2184–2188. [Google Scholar] [CrossRef] [PubMed]
- Agullo-Barcelo, M.; Casas-Mangas, R.; Lucena, F. Direct and indirect QMRA of infectious Cryptosporidium oocysts in reclaimed water. J. Water Health 2012, 10, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, Z.; Che, Z.; Hu, X.; Ying, M.; Ren, H.; Zhang, X.X. Prevalence of common enteric viruses in municipal wastewater treatment plants and their health risks arising from wastewater reuse. Blue-Green Syst. 2021, 3, 95–107. [Google Scholar] [CrossRef]
- Weidhaas, J.; Olsen, M.; McLean, J.E.; Allen, N.; Ahmadi, L.; Duodu, K.; Dupont, R. Microbial and chemical risk from reclaimed water use for residential irrigation. Water Reuse 2022, 12, 289–303. [Google Scholar] [CrossRef]
Model Parameter and Sample | Symbol | Unit | Distribution and Fit Parameter | Reference |
---|---|---|---|---|
Organism Concentration in NCT2RW | CRW | Log10 per L | Normal, fitted to log data | Calculated from 22 reclaimed water samples |
Adenovirus A–F | Normal (μ: 3.72,σ: 1.56) | |||
Salmonella spp. | Normal (μ: 0.13,σ: 0.45) | |||
Cryptosporidium spp. | Normal μ: 0.22,σ: 0.36) | |||
Giardia spp. | Normal (μ: 0.22,σ: 0.38) | |||
Daily fruit and vegetable consumption | Mi | g (kg ca da)−1 | Point Estimate (PE), 313 | US EPA, 2011 [17] |
Percentage of fruit and vegetables consumed raw | fraw | - | Triangular (0.25, 0.5, 0.75) | Van Ginneken and Oron, 2010 [18] |
Kinetic decay constant | K | Day−1 | ||
Viruses | PE, 0.69 | Asano et al., 1992 [19] | ||
Bacteria | PE, 0.147 | Reinoso et al., 2008 [20] | ||
Protozoan parasites | PE, 0.0365 | |||
Body mass | Mbody | kg | Lognormal (μ: 61.429, σ: 13.362) | US EPA, 2011 [17] |
Equivalent volume | Veq | g−1 | ||
Spray irrigation | PE, 1.6 × 10−4 | Van Ginneken and Oron, 2010 [18] | ||
Drip irrigation | Triangular (1.6 × 10−7, 1.6 × 10−6, 1.6× 10−5) | |||
Subsurface drip irrigation | Triangular (1.6 × 10−8, 1.6 × 10−7, 1.6× 10−6) | |||
Period between irrigation and consumption | td | Days | 0, 15, 30 | - |
Scenario | DALY per Year * | |||
---|---|---|---|---|
Irrigation Type | Organism | Average | Lower Confidence Limit | Upper Confidence Limit |
Spray (SI) | Salmonella spp. | 7.49 × 10−6 | 5.07 × 10−7 | 8.93 × 10−5 |
Adenovirus A–F | 1.15 × 10−9 | 4.98 × 10−10 | 2.64 × 10−9 | |
Cryptosporidium spp. | 8.74 × 10−5 | 1.27 × 10−5 | 4.81 × 10−4 | |
Giardia spp. | 3.44 × 10−4 | 5.38 × 10−5 | 9.98 × 10−4 | |
Drip (DI) | Salmonella spp. | 2.25 × 10−7 | 1.16 × 10−8 | 4.00 × 10−6 |
Adenovirus A–F | 3.66 × 10−11 | 7.25 × 10−12 | 1.28 × 10−10 | |
Cryptosporidium spp. | 2.76 × 10−6 | 2.61 × 10−7 | 2.54 × 10−5 | |
Giardia spp. | 1.26 × 10−5 | 1.14 × 10−6 | 1.16 × 10−4 | |
Subsurface drip (SDI) | Salmonella spp. | 2.28 × 10−8 | 1.12 × 10−9 | 4.05 × 10−7 |
Adenovirus A–F | 3.63 × 10−12 | 6.92 × 10−13 | 1.28 × 10−11 | |
Cryptosporidium spp. | 2.73 × 10−7 | 2.57 × 10−8 | 2.66 × 10−6 | |
Giardia spp. | 1.27 × 10−6 | 1.10 × 10−7 | 1.25 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, E.S.; Sobsey, M.D. Quantitative Microbial Risk Assessment of North Carolina Type 2 Reclaimed Water for Agricultural Reuse. Appl. Sci. 2022, 12, 10159. https://doi.org/10.3390/app121910159
Bailey ES, Sobsey MD. Quantitative Microbial Risk Assessment of North Carolina Type 2 Reclaimed Water for Agricultural Reuse. Applied Sciences. 2022; 12(19):10159. https://doi.org/10.3390/app121910159
Chicago/Turabian StyleBailey, Emily S., and Mark D. Sobsey. 2022. "Quantitative Microbial Risk Assessment of North Carolina Type 2 Reclaimed Water for Agricultural Reuse" Applied Sciences 12, no. 19: 10159. https://doi.org/10.3390/app121910159
APA StyleBailey, E. S., & Sobsey, M. D. (2022). Quantitative Microbial Risk Assessment of North Carolina Type 2 Reclaimed Water for Agricultural Reuse. Applied Sciences, 12(19), 10159. https://doi.org/10.3390/app121910159