Predicting User’s Measurements without Manual Measuring: A Case on Sports Garment Applications
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Anthropometrics for Customer-Tailored Design
1.1.1. Wear Database
1.1.2. Shape Model
1.2. Regression Models
1.3. Research Objective
2. Materials and Methods
2.1. Existing Shape Model
2.2. Participants
2.3. Materials
- -
- Dressing room and research room;
- -
- A custom clothing set of the Bodyfit range of Bioracer in all sizes;
- -
- Bioracer sizing chart, see Figure 1;
- -
- Measuring tools: calipers, flexible ruler, and scales;
- -
- Laptops to register all data and scans;
- -
- Styku 3D scanner (Styku, n.d.) based on a Kinect V2 scanner and a turntable);
- -
- Shape model of Section 3.1 (including optimal prediction parameters).
2.3.1. Clothing Set
2.3.2. Styku 3D Scanner
2.4. Procedure
2.5. Analysis
3. Results
3.1. Step 1: Regression Model Development
3.2. Step 2: Selection of Input Parameters for Models
3.3. Step 3: Comparison Manual Measurements versus Model Predictions
3.4. Step 4: Comparison Preferred Size versus Model and Chart Predictions
3.5. Female-Specific Adaptations to Regression Model Predictions
4. Discussion
4.1. Limitations
4.2. Future Opportunities
4.3. Relevance for Other Sectors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peeters, T.; Vleugels, J.; De Bruyne, G. Custom Made Cycling Jerseys Prediction Based on Kinect Analysis for Improved Performance. In Proceedings of the AHFE 2018 International Conference on Physical Ergonomics & Human Factors, Orlando, FL, USA, 21–25 July 2018; pp. 253–259. [Google Scholar] [CrossRef]
- Lukes, R.A.; Chin, S.B.; Haake, S.J. The understanding and development of cycling aerodynamics. Sports Eng. 2005, 8, 59–74. [Google Scholar] [CrossRef]
- Gupta, P. Comparative Study of Online and Offline Shopping: A Case Study of Rourkela in Odisha. Master’s Thesis, National Institute of Technology Rourkela, Rourkela, India, 2015. [Google Scholar]
- Mahesh, K.M. Influence of Online Shopping. Int. J. Eng. Sci. Comput. 2016, 6, 5436. [Google Scholar] [CrossRef]
- Monton Cycling Official. Cycling Wear Size Chart, Sizing Charts. 2022. Available online: https://www.montonsports.com/product-spec/sizing-charts (accessed on 12 April 2022).
- Bioracer Speedwear, Bioracer Size Charts, Size Charts. (n.d.) Available online: https://www.bioracer.com/en/team-clothing/size-chart-bioracer (accessed on 6 April 2022).
- Giant, Giant Staple Collection Sizing Chart, Sizing Chart. 2022. Available online: https://www.giant-bicycles.com/au/staple-collection-apparel#element-7882 (accessed on 6 April 2022).
- Pheasant, S.; Haslegrave, C.M. Bodyspace; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Farkas, L.G. Anthropometry of the Head and Face, 2nd ed.; Raven Press: New York, NY, USA, 1994. [Google Scholar]
- Ball, R.; Shu, C.; Xi, P.; Rioux, M.; Luximon, Y.; Molenbroek, J. A comparison between Chinese and Caucasian head shapes. Appl. Ergon. 2010, 41, 832–839. [Google Scholar] [CrossRef]
- TU Delft. DINED 1D Anthropometric Database, DINED. 2020. Available online: https://dined.io.tudelft.nl/en/database/introduction (accessed on 15 April 2022).
- Motmans, R.; Ceriez, E. DINBelg 2005: Body Dimensions of the Belgian Population; Ergonomie RC: Leuven, Belgium, 2005. [Google Scholar]
- Lacko, D.; Huysmans, T.; Parizel, P.M.; De Bruyne, G.; Verwulgen, S.; Van Hulle, M.M.; Sijbers, J. Evaluation of an anthropometric shape model of the human scalp. Appl. Ergon. 2014, 48, 70–85. [Google Scholar] [CrossRef]
- Robinette, K.; Daanen, H.; Paquet, E. The CAESAR project: A 3-D surface anthropometry survey. In Proceedings of the 2nd International Conference on 3-D Digital Imaging and Modeling, 3DIM, Ottawa, ON, Canada, 8 October 1999; pp. 380–386. [Google Scholar] [CrossRef]
- International Standard (ISO 7250); Basic Human Body Measurements for Technological Design. The International Organization for Standardization: Geneva, Switzerland, 2008.
- Robinette, K.M. Civilian American and European Surface Anthropometry Resource (CAESAR) Final Report; Society of Automative Engineers: Warrendale, PA, USA, 2002. [Google Scholar]
- Wang, C.C.L. Parameterization and parametric design of mannequins. Comput.-Aided Des. 2005, 37, 83–98. [Google Scholar] [CrossRef]
- Huysmans, T.; Danckaers, F.; Vleugels, J.; Lacko, D.; De Bruyne, G.; Verwulgen, S.; Sijbers, J. Multi-patch B-Spline Statistical Shape Models for CAD-Compatible Digital Human Modeling. In Proceedings of the AHFE 2018 International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, Orlando, FL, USA, 21–25 July 2018; pp. 179–189. [Google Scholar] [CrossRef]
- Lacko, D.; Huysmans, T.; Vleugels, J.; De Bruyne, G.; Van Hulle, M.M.; Sijbers, J.; Verwulgen, S. Product sizing with 3D anthropometry andk-medoids clustering. Comput.-Aided Des. 2017, 91, 60–74. [Google Scholar] [CrossRef]
- Mukunthan, S.; Vleugels, J.; Huysmans, T.; Mayor, T.S.; De Bruyne, G. A 3D Printed Thermal Manikin Head for Evaluating Helmets for Convective and Radiative Heat Loss. In Proceedings of the 20th Congress of the International Ergonomics Association, Florence, Italy, 26–30 August 2018; pp. 592–602. [Google Scholar] [CrossRef]
- Lacko, D.; Vleugels, J.; Fransen, E.; Huysmans, T.; De Bruyne, G.; Van Hulle, M.M.; Sijbers, J.; Verwulgen, S. Ergonomic design of an EEG headset using 3D anthropometry. Appl. Ergon. 2017, 58, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, C.K. Parametric body model generation for garment drape simulation. Fibers Polym. 2004, 5, 12–18. [Google Scholar] [CrossRef]
- Okabe, H.; Imaoka, H.; Tomiha, T.; Niwaya, H. Three dimensional apparel CAD system. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 26–31 July 1992; pp. 105–110. [Google Scholar] [CrossRef]
- Danckaers, F. The Development of 3D Statistical Shape Models for Diverse Applications. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2019. Available online: https://hdl.handle.net/10067/1579500151162165141 (accessed on 14 April 2022).
- Danckaers, F.; Huysmans, T.; Hallemans, A.; De Bruyne, G.; Truijen, S.; Sijbers, J. Full Body Statistical Shape Modeling with Posture Normalization. In Advances in Human Factors in Simulation and Modeling; Advances in Intelligent Systems and Computing; Cassenti, D., Ed.; Springer: Cham, Switzerland, 2018; pp. 437–448. [Google Scholar] [CrossRef]
- Danckaers, F.; Huysmans, T.; Hallemans, A.; De Bruyne, G.; Truijen, S.; Sijbers, J. Posture normalisation of 3D body scans. Ergonomics 2019, 62, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derouchey, J.D. Reliability of The Styku 3d Whole Body Scanner for the Assessment of Body Size in College Athletes. Master’s Thesis, University of North Dakota, Grand Forks, ND, USA, 2018. [Google Scholar]
- Bragança, S.; Arezes, P.; Carvalho, M.; Ashdown, S.P.; Castellucci, I.; Leão, C. A comparison of manual anthropometric measurements with Kinect-based scanned measurements in terms of precision and reliability. Work 2018, 59, 325–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgeois, B.; Ng, B.K.; Latimer, D.; Stannard, C.R.; Romeo, L.; Li, X.; Shepherd, J.A.; Heymsfield, S.B. Clinically applicable optical imaging technology for body size and shape analysis: Comparison of systems differing in design. Eur. J. Clin. Nutr. 2017, 71, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Peeters, T.; Vleugels, J.; Verwulgen, S.; De Bruyne, G. The Influence of the Transformation Between Standing and Cycling Position on Upper Body Dimensions. In Proceedings of the AHFE 2019 International Conference on Physical Ergonomics and Human Factors, Washington, DC, USA, 24–28 July 2019; pp. 207–212. [Google Scholar] [CrossRef]
- Peeters, T.; Vleugels, J.; Verwulgen, S.; Danckaers, F.; Huysmans, T.; Sijbers, J.; De Bruyne, G. A Comparative Study Between Three Measurement Methods to Predict 3D Body Dimensions Using Shape Modelling. In Proceedings of the AHFE 2019 International Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping, Washington, DC, USA, 24–28 July 2019; pp. 464–470. [Google Scholar] [CrossRef]
- Chow, J.C.; Ang, K.D.; Lichti, D.D.; Teskey, W.F. Performance analysis of a low-cost triangulation-based 3d camera: Microsoft kinect system. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B5, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Plantard, P.; Shum, H.P.; Le Pierres, A.-S.; Multon, F. Validation of an ergonomic assessment method using Kinect data in real workplace conditions. Appl. Ergon. 2017, 65, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Hirshberg, D.; Black, M.J. Home 3D body scans from noisy image and range data. In Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 1951–1958. [Google Scholar] [CrossRef]
- Mony, P.K.; Swaminathan, S.; Gajendran, J.K.; Vaz, M. Quality assurance for accuracy of anthropometric measurements in clinical and epidemiological studies [Errare humanum est = to err is human]. Indian J. Community Med. 2016, 41, 98–102. [Google Scholar] [CrossRef]
- Niddam, J.; Lange, F.; Meningaud, J.-P.; Bosc, R. Complexity of bra measurement system: Implications in plastic surgery. Eur. J. Plast. Surg. 2014, 37, 631–632. [Google Scholar] [CrossRef]
- CSN EN 13402; Size Designation of Clothes—Part 1: Terms, Definitions and Body Measurement Procedure. European Standards: Pilsen, Czech Republic, 2017.
- Danckaers, F.; Huysmans, T.; Lacko, D.; Sijbers, J. Evaluation of 3D Body Shape Predictions Based on Features. In Proceedings of the 6th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 27–28 October 2015. [Google Scholar] [CrossRef] [Green Version]
- Daanen, H.A.; Byvoet, M.B. Blouse sizing using self-reported body dimensions. Int. J. Cloth. Sci. Technol. 2011, 23, 341–350. [Google Scholar] [CrossRef]
Male chest circumference | = | 84.630845 × log(age) | ||
−0.028169 × weight2 | +14.480524 × weigh | −647.094102 × log(weight) | ||
−0.000204 × stature2 | +2053.400368 × log(stature) | |||
−4895.536588 | ||||
Male hip circumference | = | 0.072907 × age2 | −10.385996 × age | +350.015534 × log(age) |
+0.037967 × weight2 | −8.498566 × weight | +1363.200158 × log(weight ) | ||
−0000.301 × stature2 | ||||
−1311.519809 | ||||
Female chest circumference | = | 0.016543 × age2 | −43.189966 × log(age) | |
−0.041868 × weight2 | +16.94243 × weight | −551.488704 × log(weight) | ||
−0000.8065 × stature2 | ||||
+ 1285.248759 | ||||
Female hip circumference | = | −0.339797 × age | ||
+0.025388 × weight2 | −4.287962 × weight | +1221.98981 × log(weight) | ||
−0000.5088 × stature2 | ||||
−855.683863 |
Regression Model (Base Parameters) | RMSE (mm) | Relative Error (%) | ICC | ||||||
---|---|---|---|---|---|---|---|---|---|
M | F | M+F | M | F | M + F | M | F | M + F | |
Chest circ. | 24.7 | 49.3 | 34.9 | −0.72 | −2.65 | −1.36 | 0.95 | 0.84 | 0.90 |
Circ. under Bust | 104.5 | 108.2 | 105.8 | −11.0 | −9.57 | −10.5 | 0.47 | 0.51 | 0.49 |
Waist circ. | 64.7 | 144.8 | 98.9 | −5.64 | −14.1 | −8.47 | 0.74 | 0.43 | 0.56 |
Hip circ. | 29.1 | 49.5 | 37.2 | 1.62 | 2.00 | 1.75 | 0.90 | 0.81 | 0.87 |
Arm length | 127.9 | 86.4 | 115.7 | 24.85 | 16.79 | 22.16 | 0.12 | 0.09 | 0.13 |
Waist front length | 48.2 | 66.0 | 54.8 | −8.42 | −12.5 | −9.79 | 0.41 | 0.05 | 0.45 |
Shape Model (Base Parameters) | RMSE (mm) | Relative Error (%) | ICC | ||||||
---|---|---|---|---|---|---|---|---|---|
M | F | M + F | M | F | M + F | M | F | M + F | |
Chest Circ. | 60.3 | 57.0 | 59.2 | −4.82 | −2.65 | −4.10 | 0.83 | 0.90 | 0.84 |
Circ. under Bust | 43.2 | 102.2 | 68.7 | 2.91 | −8.44 | −0.87 | 0.86 | 0.57 | 0.76 |
Waist circ. | 80.1 | 140.9 | 104.4 | −8.04 | −14.12 | −10.07 | 0.72 | 0.50 | 0.60 |
Hip circ. | 45.9 | 76.1 | 57.7 | −1.74 | 1.60 | −0.63 | 0.82 | 0.54 | 0.75 |
Arm length | 185.8 | 178.2 | 183.3 | −30.34 | −34.86 | −31.84 | 0.03 | 0.02 | 0.03 |
Waist front length | 47.0 | 76.0 | 58.3 | −8.65 | −15.22 | −10.84 | 0.48 | 0.12 | 0.48 |
Shape Model (Base + Styku Data) | RMSE (mm) | Relative Error (%) | ICC | ||||||
---|---|---|---|---|---|---|---|---|---|
M | F | M + F | M | F | M + F | M | F | M + F | |
Chest circ. | 33.1 | 39.1 | 35.1 | −2.60 | −2.83 | −2.67 | 0.91 | 0.92 | 0.91 |
Circ. under Bust | 26.2 | 55.1 | 38.0 | −0.02 | 2.24 | 0.71 | 0.94 | 0.85 | 0.90 |
Waist circ. | 209.2 | 65.3 | 50.6 | −3.79 | 5.84 | 2.98 | 0.87 | 0.82 | 0.85 |
Hip circ. | 38.0 | 22.6 | 33.8 | −3.45 | −1.59 | −2.85 | 0.87 | 0.97 | 0.91 |
Arm length | 280.7 | 242.5 | 269.0 | 56.68 | 47.31 | 53.64 | 0.03 | 0.03 | 0.04 |
Waist front length | 143.8 | 175.4 | 154.7 | 29.34 | 39.91 | 32.74 | 0.06 | 0.03 | 0.06 |
Shirts | Shorts | |||
---|---|---|---|---|
Handpicked vs. Size Chart Selection | Handpicked vs. Predicted | Handpicked vs. Size Chart Selection | Handpicked vs. Predicted | |
Average error | −0.11 sizes (0.27 | −1) | −0.43 sizes (−0.08 | −1.27) | −0.19 sizes (−0.69 | 1) | −0.05 sizes (−0.62 | 1.27) |
Std | 0.94 (0.67 | 0.89) | 1.07 (0.84 | 1.1) | 1.05 (0.74 | 0.63) | 1.27 (0.94 | 0.9) |
Absolute average | ±0.65 sizes (±0.42 | ±1.18) | ±0.81 sizes (±0.62 | ±1.27) | ±0.84 sizes (±0.77 | ±1) | ±0.97 sizes (±0.77 | ±1.45) |
Cup-Size | AA | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|---|
Correction Value (mm) | 11 mm | 13 mm | 15 mm | 17 mm | 19 mm | 21 mm | 23 mm | 25 mm | 27 mm |
Female chest circumference | = | 0.0007104 × age2 | |
−0.0015879 × weight2 | +0.7503453 × weight | ||
−0.0005683 × stature2 | |||
+0.402006 × bra_size | +0.846651 × cup_size-correction | ||
+22.1669827 | |||
Female hip circumference | = | −0.0272542 × age | |
+0.0013592 × weight2 | +88.0784348 × log(weight) | ||
−0.00163 × stature2 | +138.4747899 × log(stature) | ||
−0.097014 × bra_size | −0.0113216 × cup_size-correction | ||
−452.389437 |
Regression Model+ | RMSE (mm) | Relative Error (%) | ICICC | ||||||
---|---|---|---|---|---|---|---|---|---|
M | F | F + Bra Size | M | F | F + Bra Size | M | F | F + Bra Size | |
Chest circumference | 40.64 | 46.15 | 38.65 | 0.2 | 0.21 | 0.15 | 0.92 | 0.91 | 0.94 |
Hip circumference | 36.42 | 40.61 | 40.23 | 0.12 | 0.15 | 0.17 | 0.91 | 0.92 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vleugels, J.; Veelaert, L.; Peeters, T.; Huysmans, T.; Danckaers, F.; Verwulgen, S. Predicting User’s Measurements without Manual Measuring: A Case on Sports Garment Applications. Appl. Sci. 2022, 12, 10158. https://doi.org/10.3390/app121910158
Vleugels J, Veelaert L, Peeters T, Huysmans T, Danckaers F, Verwulgen S. Predicting User’s Measurements without Manual Measuring: A Case on Sports Garment Applications. Applied Sciences. 2022; 12(19):10158. https://doi.org/10.3390/app121910158
Chicago/Turabian StyleVleugels, Jochen, Lore Veelaert, Thomas Peeters, Toon Huysmans, Femke Danckaers, and Stijn Verwulgen. 2022. "Predicting User’s Measurements without Manual Measuring: A Case on Sports Garment Applications" Applied Sciences 12, no. 19: 10158. https://doi.org/10.3390/app121910158
APA StyleVleugels, J., Veelaert, L., Peeters, T., Huysmans, T., Danckaers, F., & Verwulgen, S. (2022). Predicting User’s Measurements without Manual Measuring: A Case on Sports Garment Applications. Applied Sciences, 12(19), 10158. https://doi.org/10.3390/app121910158