Subspace Pseudointensity Vectors Approach for DoA Estimation Using Spherical Antenna Array in the Presence of Unknown Mutual Coupling
Abstract
:Featured Application
Abstract
1. Introduction
2. Mathematical Formulation of Pseudointensity Vector
2.1. Overview of Signal Intensity and Pseudointensity
2.2. PV System Model
2.3. Subspace PV
3. Numerical Experiment and Discussion
3.1. Estimating DoA from PVs and SPVs
3.2. Results, Discussion, and Comparison with Baseline Approaches
3.3. Simulation Results
3.4. Experimental Results
3.5. Computational Complexity Analysis
4. Conclusions and Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pralon, M.G.; del Galdo, G.; Landmann, M.; Hein, M.A.; Thoma, R.S. Suitability of compact antenna arrays for direction-of-arrival estimation. IEEE Trans. Antennas Propag. 2017, 65, 7244–7272. [Google Scholar] [CrossRef]
- Carlin, M.; Rocca, P.; Oliveri, G.; Viani, F.; Massa, A. Directions-of-arrival estimation through bayesian compressive sensing strategies. IEEE Trans. Antennas Propag. 2013, 61, 3828–3838. [Google Scholar] [CrossRef]
- Famoriji, O.J.; Shongwe, T. Direction-of-arrival estimation of electromagnetic wave impinging on spherical antenna array in the presence of mutual coupling using a multiple signal classification method. Electronics 2021, 10, 2651. [Google Scholar] [CrossRef]
- Famoriji, O.J.; Shongwe, T. Source localization of EM waves in the near-field of spherical antenna array in the presence of unknown mutual coupling. Wirel. Commun. Mob. Comput. 2021, 2021, 3237219. [Google Scholar] [CrossRef]
- Famoriji, O.J.; Shongwe, T. Critical review of basic methods on DoA estimation of EM waves impinging a spherical antenna array. Electronics 2022, 11, 208. [Google Scholar] [CrossRef]
- Famoriji, O.J.; Ogundepo, O.Y.; Qi, X. An intelligent deep learning-based direction-of-arrival estimation scheme using spherical antenna array with unknown mutual coupling. IEEE Access 2020, 8, 179259–179271. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, C.; Kumar, S.; Srinivasan, V. Active spherical phased array design for satellite payload data transmission. IEEE Trans. Antennas Propag. 2015, 63, 4783–4791. [Google Scholar] [CrossRef]
- Rafaely, B. Plane-wave decomposition of the pressure on a sphere by spherical convolution. J. Acoust. Soc. Am. 2004, 116, 2149–2157. [Google Scholar] [CrossRef] [Green Version]
- Teutsch, H.; Kellermann, W. EB-ESPRIT: 2D localization of multiple wideband acoustic sources using Eigen-beams. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, PA, USA, 23 March 2005; pp. iii/89–iii/92. [Google Scholar]
- Khaykin, D.; Rafaely, B. Coherent signals direction-of-arrival estimation using a spherical microphone array: Frequency smoothing approach. In Proceedings of the 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 18–21 October 2009; pp. 221–224. [Google Scholar]
- Jarrett, D.P.; Habets, E.A.P.; Naylor, P.A. 3D source localization in the spherical harmonic domain using a pseudointensity vector. In Proceedings of the 2010 18th European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010; pp. 442–446. [Google Scholar]
- Rafaely, B.; Peled, Y.; Agmon, M.; Khaykin, D.; Fisher, E. Spherical microphone array beamforming. In Speech Processing in Modern Communication: Challenges and Perspectives; Cohen, I., Benesty, J., Gannot, S., Eds.; Springer: New York, NY, USA, 2010; Volume 11. [Google Scholar]
- Sun, H.; Mabande, E.; Kowalczyk, K.; Kellermann, W. Localization of distinct reflections in rooms using spherical microphone array Eigenbeam processing. J. Acoust. Soc. Am. 2012, 131, 2828–2840. [Google Scholar] [CrossRef]
- Famoriji, O.J.; Shongwe, T. Multi-Source DoA Estimation of EM Waves Impinging Spherical Antenna Array with Unknown Mutual Coupling using Relative Signal Pressure Based Multiple Signal Classification Approach. IEEE Access 2022, 10, 103793–103805. [Google Scholar] [CrossRef]
- Nadiri, O.; Rafaely, B. Localization of multiple speakers under high reverberation using a spherical microphone array and the direct-path dominance test. IEEE/ACM Trans. Audio Speech Lang. Processing 2014, 22, 1494–1505. [Google Scholar] [CrossRef]
- Moore, A.H.; Evers, C.; Naylor, P.A.; Alon, D.L.; Rafaely, B. Direction of arrival estimation using pseudointensity vectors with direct-path dominance test. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2296–2300. [Google Scholar]
- Pavlidi, D.; Delikaris-Manias, S.; Pulkki, V.; Mouchtaris, A. 3D localization of multiple sound sources with intensity vector estimates in single source zones. In Proceedings of the 2015 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 1556–1560. [Google Scholar]
- Huang, Z.; Wang, W.; Dong, F.; Wang, D. A one-snapshot localization algorithm for mixed far-field and near-field sources. IEEE Commun. Lett. 2020, 24, 1010–1014. [Google Scholar] [CrossRef]
- Kuznetsov, Y.; Baev, A.; Konovalyuk, M.; Gorbunova, A.; Russer, J.A. Autocorrelation analysis and near-field localization of the radiating sources with cyclostationary properties. IEEE Trans. Electromagn. Compat. 2020, 62, 2186–2195. [Google Scholar] [CrossRef]
- Varanasi, V.; Hegde, R. Robust online direction of arrival estimation using low dimensional spherical harmonic features. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 511–515. [Google Scholar]
- Zhang, C.; Florencio, D.; Zhang, Z. Why does PHAT work well in low noise, reverberative environments? In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 2565–2568. [Google Scholar]
- Fisher, E.; Rafaely, B. The nearfield spherical microphone array. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 5272–5275. [Google Scholar]
- Huang, Q.; Chen, T. One-dimensional MUSIC-type algorithm for spherical microphone arrays. IEEE Access 2020, 8, 28178–28187. [Google Scholar] [CrossRef]
- Gao, W.; Chen, H. An order-aware scheme for robust direction of arrival estimation in the spherical harmonic domain. J. Acoust. Soc. Am. 2001, 146, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S. Acoustic sound database collected for hands-free speech recognition and sound scene understanding. In Proceedings of the International Workshop on Hands-Free Speech Communication, Kyoto, Japan, 9–11 April 2001; pp. 43–46. [Google Scholar]
- Guzey, N.; Xu, H.; Jagannathan, S. Localization of near-field radio controlled unintended emitting sources in the presence of multipath fading. IEEE Trans. Instrum. Meas. 2014, 63, 2696–2707. [Google Scholar] [CrossRef]
- Verhaevert, J.; Van Lil, E.; Van de Capelle, A. The influence of deformation of conformal and spherical antenna arrays on the SAGE algorithm. In Proceedings of the NATO Symposium on Smart Antennas, Chester, UK, 7–9 April 2003. [Google Scholar]
- Fazal-E-Asim, F.; Antreich, C.C.; Cavalcante, A.L.F.; de Almeida, J.A. Nossek Two-dimensional channel parameter estimation for millimeter-wave systems using Butler matrices. IEEE Trans. Wirel. Commun. 2021, 20, 2670–2684. [Google Scholar] [CrossRef]
- Epain, N.; Jin, C. Independent component analysis using spherical microphone arrays. Acta Acust. United Acust. 2012, 98, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Epain, N.; Jin, C. Super-resolution sound field imaging with sub-space pre-processing. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 350–354. [Google Scholar]
- Noohi, T.; Epain, N.; Jin, C. Direction of arrival estimation for spherical microphone arrays by combination of independent component analysis and sparse recovery. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 346–349. [Google Scholar]
- Noohi, T.; Epain, N.; Jin, C. Super-resolution acoustic imaging using sparse recovery with spatial priming. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 2414–2418. [Google Scholar]
- Jarrett, D.P.; Habets, E.A.P.; Thomas, M.R.P.; Naylor, P.A. Rigid sphere room impulse response simulation: Algorithm and applications. J. Acoust. Soc. Amer. 2012, 132, 1462–1472. [Google Scholar] [CrossRef] [Green Version]
- Evers, C.; Moore, A.H.; Naylor, P.A. Multiple source localisation in the spherical harmonic domain. In Proceedings of the 14th International Workshop on Acoustic Signal Enhancement, Juan-les-Pins, France, 8–11 September 2014; pp. 258–262. [Google Scholar]
- Moore, A.H.; Evers, C.; Naylor, P.A. 2D direction of arrival estimation of multiple moving sources using a spherical microphone array. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 1217–1221. [Google Scholar]
- Pavlidi, D.; Griffin, A.; Puigt, M.; Mouchtaris, A. Real-time multiple sound source localization and counting using a circular microphone array. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 2193–2206. [Google Scholar] [CrossRef]
- Jacobsen, F.; de Bree, H.-E. A comparison of two different sound intensity measurement principles. J. Acoust. Soc. Am. 2005, 118, 1510–1517. [Google Scholar] [CrossRef] [Green Version]
- De Bree, H.-E.; Leussink, P.; Korthorst, T.; Jansen, H.; Lammerink, T.S.; Elwenspoek, M. The μ-flown: A novel device for measuring acoustic flows. Sens. Actuators A Phys. 1996, 54, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Nehorai, A.; Paldi, E. Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 1994, 42, 2481–2491. [Google Scholar]
- Tervo, S. Direction estimation based on sound intensity vectors. In Proceedings of the 2009 17th European Signal Processing Conference, Glasgow, UK, 24–28 August 2009; pp. 700–704. [Google Scholar]
- Moore, A.H.; Ever, C.; Naylor, P.A. Direction of arrival estimation in the spherical harmonic domain using subspace pseudointensity vectors. IEEE/ACM Trans. Audio Speech Lang. Processing 2017, 25, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Rafaely, B. Phase-mode versus delay-and-sum spherical microphone array processing. IEEE Signal Process. Lett. 2005, 12, 713–716. [Google Scholar] [CrossRef]
- Kumar, B.P.; Kumar, C.; Kumar, V.S.; Srinivasan, V.V. Reliability consideration of spherical phased array antenna for satellites. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1381–1391. [Google Scholar] [CrossRef]
- Famoriji, O.J.; Shongwe, T. Electromagnetic machine learning for estimation and mitigation of mutual coupling in strongly coupled arrays. ICT Express, 2021; in press. [Google Scholar] [CrossRef]
N | PV (s) | SPV (s) | PWD-SRP (s) | DPD-MUSIC (s) |
---|---|---|---|---|
10 | 0.018 | 0.024 | 0.153 | 0.161 |
50 | 0.201 | 0.254 | 0.311 | 0.323 |
75 | 0.281 | 0.291 | 0.374 | 0.393 |
100 | 0.632 | 0.643 | 0.773 | 0.787 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Famoriji, O.J.; Shongwe, T. Subspace Pseudointensity Vectors Approach for DoA Estimation Using Spherical Antenna Array in the Presence of Unknown Mutual Coupling. Appl. Sci. 2022, 12, 10099. https://doi.org/10.3390/app121910099
Famoriji OJ, Shongwe T. Subspace Pseudointensity Vectors Approach for DoA Estimation Using Spherical Antenna Array in the Presence of Unknown Mutual Coupling. Applied Sciences. 2022; 12(19):10099. https://doi.org/10.3390/app121910099
Chicago/Turabian StyleFamoriji, Oluwole John, and Thokozani Shongwe. 2022. "Subspace Pseudointensity Vectors Approach for DoA Estimation Using Spherical Antenna Array in the Presence of Unknown Mutual Coupling" Applied Sciences 12, no. 19: 10099. https://doi.org/10.3390/app121910099
APA StyleFamoriji, O. J., & Shongwe, T. (2022). Subspace Pseudointensity Vectors Approach for DoA Estimation Using Spherical Antenna Array in the Presence of Unknown Mutual Coupling. Applied Sciences, 12(19), 10099. https://doi.org/10.3390/app121910099