Antimicrobial Resistance Distribution and Quorum-Sensing Regulation of Enterococcal Strains, Isolated from Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Isolation, and Identification
2.2. Antimicrobial Susceptibility Testing
2.3. Molecular Assays
Target Gene | Marker Name | Primer Sequences F/R | Product Size (bp) | Annealing Temperature | References |
---|---|---|---|---|---|
sodA of E. faecalis | FL1 FL2 | ACTTATGTGACTAACTTAACC TAATGGTGAATCTTGGTTTGG | 360 | 53 °C | [15] |
sodA of E. faecium | FM1 FM2 | GAAAAAACAATAGAAGAATTAT TGCTTTTTTGAATTCTTCTTTA | 215 | 53 °C | [15] |
TEM | TEM1 TEM2 | AGGAAGAGTATGATTCAACA CTCGTCGTTTGGTATGGC | 535 | 55 °C | [16] |
aac(6′)/aph(2″) | aac(6′)/aph(2″)1 aac(6′)/aph(2″)2 | CCAAGAGCAATAAGGGCATA CACTATCATAACCACTACCG | 220 | 55 °C | [16] |
vanA | vanA1 vanA2 | GGGAAAACGACAATTGC GTACAATGCGGCCGTTA | 732 | 51 °C | [16] |
vanB | vanB1 vanB2 | CATCGCCGTCCCCGAATTTCAAA GATGCGGAAGATACCGTGGCT | 297 | 63.9 °C | [16] |
emeA | emeA1 emeA2 | GTGACAGCCTTTGTGGCAGAT TAGTCCGTTGATGGTTCCTTG | 687 | 60 °C | [16] |
asa1 | ASA 11 ASA 12 | GCACGCTATTACGAACTATGA TAAGAAAGAACATCACCACGA | 375 | 55 °C | [17] |
esp | ESP 14F ESP 12R | AGATTTCATCTTTGATTCTTGG AATTGATTCTTTAGCATCTGG | 510 | 55 °C | [17] |
2.4. Statistical Analysis
3. Results
3.1. Molecular Identification
3.2. Antimicrobial Resistance and Prevalence of Antimicrobial Resistance Genes among Enterococcus spp. Isolates
3.3. Prevalence of the Quorum-Sensing Regulation Genes asa1 and esp of Enterococcus spp.
3.4. Multidrug Resistance and esp/asa1 Gene Prevalence among Enterococcus spp. Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rice, L.B. Antimicrobial Resistance in Gram-Positive Bacteria. Am. J. Med. 2006, 119 (Suppl. 1), S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Orsi, G.B.; Falcone, M.; Venditti, M. Surveillance and management of multidrug-resistant microorganisms. Expert Rev. Anti-Infective Ther. 2011, 9, 653–679. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.D. The risk of developing a vancomycin-resistant Enterococcus bloodstream infection for colonized patients. Am. J. Infect. Control 2008, 36, S175.e5–S175.e8. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.; Phillips, C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009, 155 Pt 6, 1749–1757. [Google Scholar] [CrossRef]
- Di Rosa, R.; Creti, R.; Venditti, M.; D’Amelio, R.; Arciola, C.R.; Montanaro, L.; Baldassarri, L. Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol. Lett. 2006, 256, 145–150. [Google Scholar] [CrossRef]
- Oli, A.; Rajeshwari, R.; Chandrakanth, N. Biofilm formation by Multidrug resistant E. faecalis (MDEF) originated from clinical samples. J. Microbiol. Biotechnol. Res. 2012, 2, 284–288. [Google Scholar]
- Biswas, P.P.; Dey, S.; Sen, A.; Adhikari, L. Virulence markers of vancomycin resistant enterococci isolated from infected and colonized patients. J. Glob. Infect. Dis. 2014, 6, 157–163. [Google Scholar] [CrossRef]
- Fackland, R.; Sham, D.A.; Teixeira, L.M. Enterococcus. In Manual of Clinical Microbiology, 7th ed.; Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yolken, R.H., Eds.; American Society of Microbiology: Washington, DC, USA, 1999; pp. 297–305. [Google Scholar]
- Facklam, R.R.; Carvalho, M.G.S.; Teixeira, L.M. History, Taxonomy, Biochemical Characteristics, and Antibiotic Susceptibility Testing of Enterococci. In The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; Gilmore, M.S., Clewell, D.B., Courvalin, P., Dunny, G.M., Murray, B.E., Rice, L.B., Eds.; ASM Press: Washington, DC, USA, 2002; pp. 1–54. [Google Scholar]
- Mahon, A.R.; Horton, D.J.; Learman, D.R.; Nathan, L.R.; Jerde, C.L. Investigating diversity of pathogenic microbes in commercial bait trade water. PeerJ 2018, 6, e5468. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 7.1; Valid from 10 March 2017. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf (accessed on 15 May 2022).
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 8.1; Valid from 15 May 2018. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf (accessed on 15 May 2022).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a Genus- and Species-Specific Multiplex PCR for Identification of Enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Li, G.; Wang, W. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Hospital-Based Study in China. Int. J. Environ. Res. Public Health 2014, 11, 3424–3442. [Google Scholar] [CrossRef] [PubMed]
- Vankerckhoven, V.; Van Autgaerden, T.; Vael, C.; Lammens, C.; Chapelle, S.; Rossi, R.; Jabes, D.; Goossens, H. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J. Clin. Microbiol. 2004, 42, 4473–4479. [Google Scholar] [CrossRef] [PubMed]
- Layton, B.; Walters, S.; Lam, L.; Boehm, A. Enterococcus species distribution among human and animal hosts using multiplex PCR. J. Appl. Microbiol. 2010, 109, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Low, D.E.; Keller, N.; Barth, A.; Jones, R.N. Clinical Prevalence, Antimicrobial Susceptibility, and Geographic Resistance Patterns of Enterococci: Results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32 (Suppl. 2), S133–S145. [Google Scholar] [CrossRef]
- Simonsen, G.S.; Smеbrekke, L.; Monnet, D.L.; Sшrensen, T.L.; Mшller, J.K.; Kristinsson, K.G.; Lagerqvist-Widh, A.; Torell, E.; Digranes, A.; Harthug, S.; et al. Prevalence of resistance to ampicillin, gentamicin and vancomycin in Enterococcus faecalis and Enterococcus faecium isolates from clinical specimens and use of antimicrobials in five Nordic hospitals. J. Antimicrob. Chem. 2003, 51, 323–331. [Google Scholar] [CrossRef]
- Zarrilli, R.; Tripodi, M.F.; Di Popolo, A.; Fortunato, R.; Bagattini, M.; Crispino, M.; Florio, A.; Triassi, M.; Utili, R. Molecular epidemiology of high-level aminoglycoside-resistant enterococci isolated from patients in a university hospital in southern Italy. J. Antimicrob. Chemother. 2005, 56, 827–835. [Google Scholar] [CrossRef]
- El-Mahdy, R.; Mostafa, A.; El-Kannishy, G. High level aminoglycoside resistant enterococci in hospital-acquired urinary tract infections in Mansoura, Egypt. Germs 2018, 8, 186–190. [Google Scholar] [CrossRef]
- Gök, Ş.M.; Türk Dağı, H.; Kara, F.; Arslan, U.; Fındık, D. Investigation of Antibiotic Resistance and Virulence Factors of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Clinical Samples. Mikrobiyol. Bul. 2020, 54, 26–39. [Google Scholar] [CrossRef]
- Arshadi, M.; Douraghi, M.; Shokoohizadeh, L.; Moosavian, S.M.; Pourmand, M.R. High prevalence of diverse vancomycin resistance Enterococcus faecium isolates in clinical and environmental sources in ICU wards in southwest of Iran. Microb. Pathog. 2017, 111, 212–217. [Google Scholar] [CrossRef]
- Somily, A.M.; Al-Mohizea, M.M.; Absar, M.M.; Fatani, A.J.; Ridha, A.M.; Al-Ahdal, M.N.; Senok, A.C.; Al-Qahtani, A.A. Molecular epidemiology of vancomycin resistant enterococci in a tertiary care hospital in Saudi Arabia. Microb. Pathog. 2016, 97, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Jahansepas, A.; Aghazadeh, M.; Rezaee, M.A.; Hasani, A.; Sharifi, Y.; Aghazadeh, T.; Mardaneh, J. Occurrence of Enterococcus faecalis and Enterococcus faecium in Various Clinical Infections: Detection of Their Drug Resistance and Virulence Determinants. Microb. Drug Resist. 2018, 24, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Duprи, I.; Zanetti, S.; Schito, A.M.; Fadda, G.; Sechi, L.A. Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J. Med. Microbiol. 2003, 52 Pt 6, 491–498. [Google Scholar] [CrossRef]
- Sharifi, Y.; Hasani, A.; Ghotaslou, R.; Aghazadeh, M.; Milani, M.; Bazmany, A. Virulence and antimicrobial resistance in Enterococci isolated from urinary tract infections. Adv. Pharm. Bull. 2013, 3, 197–201. [Google Scholar]
- Hдllgren, A.; Claesson, C.; Saeedi, B.; Monstein, H.J.; Hanberger, H.; Nilsson, L.E. Molecular detection of aggregation substance, enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of Enterococcus faecalis and E. faecium of clinical origin. Int. J. Med. Microbiol. 2009, 299, 323–332. [Google Scholar] [CrossRef]
- Strateva, T.; Atanasova, D.; Savov, E.; Petrova, G.; Mitov, I. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria. Braz. J. Infect. Dis. 2016, 20, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.; Baghdayan, A.S.; Huycke, M.M.; Lindahl, G.; Gilmore, M.S. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect. Immun. 1999, 67, 193–200. [Google Scholar] [CrossRef]
- Moniri, R.; Ghasemi, A.; Moosavi, S.G.A.; Dastehgoli, K.; Rezaei, M. Virulence Gene’s Relationship with Biofilm Formation and Detection of aac (6′)/aph (2″) in Enterococcus faecalis Isolated From Patients with Urinary Tract Infection. Jundishapur J. Microbiol. 2013, 6, e94137. [Google Scholar] [CrossRef]
- Creti, R.; Imperi, M.; Bertuccini, L.; Fabretti, F.; Orefici, G.; Di Rosa, R.; Baldassarri, L. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J. Med. Microbiol. 2004, 53 Pt 1, 13–20. [Google Scholar] [CrossRef]
- Daigle, D.M.; Hughes, D.W.; Wright, G. Prodigious substrate specificity of AAC(6′)-APH(2′’), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. Chem. Biol. 1999, 6, 99–110. [Google Scholar] [CrossRef]
- Kapoor, L.; Randhawa, V.S.; Deb, M. Antimicrobial resistance of enterococcal blood isolates at a pediatric care hospital in India. Jpn. J. Infect. Dis. 2005, 58, 101–103. [Google Scholar] [PubMed]
- Jabalameli, F.; Emaneini, M.; Shahsavan, S.; Sedaghat, H.; Abdolmaliki, Z.; Aligholi, M. Evaluation of Antimicrobial Susceptibility Patterns of Enterococci Isolated from Patients in Tehran University of Medical Sciences Teaching Hospitals. Acta Med. Iran. 2009, 47, 325–328. [Google Scholar]
- Fernandes, S.C.; Dhanashree, B. Drug resistance & virulence determinants in clinical isolates of Enterococcus species. Indian J. Med. Res. 2013, 137, 981–985. [Google Scholar]
- Bhatt, P.; Patel, A.; Sahni, A.; Praharaj, A.; Grover, N.; Chaudhari, C.; Das, N.K.; Kulkarni, M. Emergence of multidrug resistant enterococci at a tertiary care centre. Med. J. Armed Forces India 2015, 71, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khani, M.; Fatollahzade, M.; Pajavand, H.; Bakhtiari, S.; Abiri, R. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6’)-aph(2") Gene: A Therapeutic Problem in Kermanshah, Iran. Jundishapur. J. Microbiol. 2016, 9, e28923. [Google Scholar] [CrossRef]
- Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob. Agents. Chemother. 2003, 47, 1423–1426. [Google Scholar] [CrossRef]
- Wilke, M.S.; Lovering, A.L.; Strynadka, N.C. β-Lactam antibiotic resistance: A current structural perspective. Curr. Opin. Microbiol. 2005, 8, 525–533. [Google Scholar] [CrossRef]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef]
- Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-Resistant Enterococci. Clin. Microbiol. Rev. 2000, 13, 686–707. [Google Scholar] [CrossRef]
- Hautemaniиre, A.; Hunter, P.R.; Diguio, N.; Albuisson, E.; Hartemann, P. A prospective study of the impact of colonization following hospital admission by glycopeptide-resistant Enterococci on mortality during a hospital outbreak. Am. J. Infect. Control 2009, 37, 746–752. [Google Scholar] [CrossRef]
- Sievert, D.; Ricks, P.; Edwards, J.; Schneider, A.; Patel, J.; Srinivasan, A.; Kallen, A.; Limbago, B.; Fridkin, S.; National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control. Hosp. Epidemiol. 2013, 34, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Adam, H.J.; Baxter, M.R.; Fuller, J.; Nichol, K.A.; Denisuik, A.J.; Lagacй-Wiens, P.R.; Walkty, A.; Karlowsky, J.A.; Schweizer, F.; et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: Results of the CANWARD 2007-11 study. J. Antimicrob. Chemother. 2013, 68 (Suppl. 1), i7–i22. [Google Scholar] [CrossRef]
- Goossens, H.; Jabes, D.; Rossi, R.; Lammens, C.; Privitera, G.; Courvalin, P. European survey of vancomycin-resistant enterococci in at-risk hospital wards and in vitro susceptibility testing of ramoplanin against these isolates. J. Antimicrob. Chemother. 2003, 51 (Suppl. 3), iii5–iii12. [Google Scholar] [CrossRef] [PubMed]
- Said, H.S.; Abdelmegeed, E.S. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect. Drug Resist. 2019, 12, 1113–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, W.M.; Wang, W. Clonal dissemination and colony morphotype variation of vancomycin-resistant Enterococcus faecium isolates in metropolitan Detroit, Michigan. J. Clin. Microbiol. 1997, 35, 388–392. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Laing, N.M.; Nichol, K.A.; Palatnick, L.P.; Noreddin, A.; Hisanaga, T.; Johnson, J.L.; Hoban, D.J.; NAVRESS Group. Antibiotic activity against urinary tract infection (UTI) isolates of vancomycin-resistant enterococci (VRE): Results from the 2002 North American Vancomycin Resistant Enterococci Susceptibility Study (NAVRESS). J. Antimicrob. Chemother. 2003, 52, 382–388. [Google Scholar] [CrossRef]
- Rafiei Tabatabaei, S.; Karimi, A.; Navidinia, M.; Fallah, F.; Tavakkoly Fard, A.; Rahbar, M. A study on prevalence of vancomycin-resistant enterococci carriers admitted in a children hospital in Iran. Ann. Biol. Res. 2012, 3, 5441–5445. [Google Scholar]
- Hoseinizadeh, A.; Abtahi, H.; ShojaPour, M.; Akbari, M.; Nazari, R.; Sofian, M. Prevalence and antimicrobial susceptibility pattern of vancomycin resistant enterococci isolated from clinical sample of educational hospitals in Arak. Arak. Med. Univ. J. 2012, 15, 11–16. [Google Scholar]
- Bell, J.M.; Paton, J.C.; Turnidge, J. Emergence of Vancomycin-Resistant Enterococci in Australia: Phenotypic and Genotypic Characteristics of Isolates. J. Clin. Microbiol. 1998, 36, 2187–2190. [Google Scholar] [CrossRef]
- Liassine, N.; Frei, R.; Jan, I.; Auckenthaler, R. Characterization of Glycopeptide-Resistant Enterococci from a Swiss Hospital. J. Clin. Microbiol. 1998, 36, 1853–1858. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, B.; Wang, S.; Willems, R.J.; Xue, F.; Cao, X.; Li, Y.; Bo, S.; Liu, J. Molecular characterisation of outbreak-related strains of vancomycin-resistant Enterococcus faecium from an intensive care unit in Beijing, China. J. Hosp. Infect. 2009, 72, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Akpaka, P.E.; Kissoon, S.; Jayaratne, P. Molecular Analysis of Vancomycin-Resistant Enterococci Isolated from Regional Hospitals in Trinidad and Tobago. Adv. Med. 2016, 2016, 8762691. [Google Scholar] [CrossRef] [PubMed]
- Top, J.; Willems, R.; van der Velden, S.; Asbroek, M.; Bonten, M. Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J. Clin. Microbiol. 2008, 46, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Rosvoll, T.C.; Lindstad, B.L.; Lunde, T.M.; Hegstad, K.; Aasnжs, B.; Hammerum, A.M.; Lester, C.H.; Simonsen, G.S.; Sundsfjord, A.; Pedersen, T. Increased high-level gentamicin resistance in invasive Enterococcus faecium is associated with aac(6′)Ie-aph(2″)Ia-encoding transferable megaplasmids hosted by major hospital-adapted lineages. FEMS Immunol. Med. Microbiol. 2012, 66, 166–176. [Google Scholar] [CrossRef]
- Seno, Y.; Kariyama, R.; Mitsuhata, R.; Monden, K.; Kumon, H. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta Med. Okayama 2005, 59, 79–87. [Google Scholar] [CrossRef]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Saffari, F.; Dalfardi, M.S.; Mansouri, S.; Ahmadrajabi, R. Survey for Correlation between Biofilm Formation and Virulence Determinants in a Collection of Pathogenic and Fecal Enterococcus faecalis Isolates. Infect. Chemother. 2017, 49, 176–183. [Google Scholar] [CrossRef]
Enterococcus spp. (n = 110) | ||
---|---|---|
Origin | E. faecalis | E. faecium |
Blood culture | 8 | 3 |
Urine | 37 | 5 |
Urinary catheter | 3 | 0 |
Wound secretion, abscesses | 36 | 2 |
Abdominal aspirates | 3 | 1 |
other 1 | 12 | 0 |
Antimicrobial Agent | Resistance (R) | ||
---|---|---|---|
E. faecalis (n, %) | E. faecium (n, %) | Total (n, %) | |
ampicillin | 58 (59%) | 11 (100%) | 69 (63%) |
ciprofloxacin | 50 (51%) | 11 (100%) | 61 (55%) |
gentamycin (HLAR) | 53 (54%) | 10 (91%) | 63 (57%) |
vancomycin | 0 (0%) | 4 (36%) | 4 (4%) |
teicoplanin | 1 (1%) | 1 (9%) | 2 (2%) |
tigecycline | 4 (4%) | 1 (9%) | 5 (5%) |
imipenem | 8 (8%) | 1 (9%) | 9 (8%) |
Antimicrobial Resistance Genes | E. faecalis (n) | E. faecium (n) | Total n (%) |
---|---|---|---|
VanB | 0 | 0 | 0 (0%) |
VanA | 1 | 0 | 1 (1%) |
emeA | 1 | 0 | 1 (1%) |
aac(6′)/aph(2″) + emeA | 80 | 6 | 86 (78%) |
aac(6′)/aph(2″) + emeA + VanA | 11 | 3 | 14 (13%) |
aac(6′)/aph(2″) + emeA + TEM | 2 | 1 | 3 (3%) |
aac(6′)/aph(2″) + emeA + VanA + TEM | 2 | 1 | 3 (3%) |
Enterococcus spp. | Quorum-Sensing Regulation Genes | ||
---|---|---|---|
asa1 | esp | asa1 + esp | |
E. faecalis (n) | 86 | 8 | 4 |
E. faecium (n) | 8 | 3 | 0 |
Total n (%) | 94 (85%) | 11 (10%) | 4 (4%) |
Chi-square Observed value/Critical value | 3367/3841 | 1930/3841 | |
p-value 1 | 0.067 | 0.165 |
Multidrug Resistance Pattern | E. faecalis (n) | E. faecium (n) | Enterococcus spp. | |
---|---|---|---|---|
asa1 (+) (n) | esp (+) (n) | |||
A–CP–G (HLAR) | 21 | 5 | 21 | 5 |
A–CP–TG | 1 | 1 | ||
A–CP–G–(HLAR), TG | 1 | 1 | 2 | |
A–CP–G (HLAR)–IPM | 3 | 1 | 4 | |
CP–G (HLAR)–TEC | 1 | 1 | ||
CP–G (HLAR)–IPM | 3 | 3 | ||
CP–G (HLAR)–TG | 1 | 1 | ||
G (HLAR)–TG–IPM | 1 | 1 | ||
A–CP–VA | 1 | 1 | ||
A–CP–G (HLAR)–VA | 2 | 1 | 1 | |
A–CP–G (HLAR)–VA–TEC | 1 | 1 | ||
Total | 32 | 11 | 37 | 6 |
Enterococcus spp. | n | p-Value 1 |
---|---|---|
Non-MDR | 54 | 0.606 |
MDR | 43 |
Quorum-Sensing Regulation Genes | Antimicrobial Resistance Genes | |||
---|---|---|---|---|
emeA | TEM | aac(6′)/aph(2″) | VanA | |
Chi-Square Observed Value/Critical Value | p-Value 1 | |||
asa1 | 314,544/12,592 | <0.0001 | ||
esp | 37,438/12,592 | <0.0001 | ||
asa1 + esp | 16,000/12,592 | <0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yordanova, R.; Yaneva, Z.; Gencheva, D.; Beev, G. Antimicrobial Resistance Distribution and Quorum-Sensing Regulation of Enterococcal Strains, Isolated from Hospitalized Patients. Appl. Sci. 2022, 12, 8735. https://doi.org/10.3390/app12178735
Yordanova R, Yaneva Z, Gencheva D, Beev G. Antimicrobial Resistance Distribution and Quorum-Sensing Regulation of Enterococcal Strains, Isolated from Hospitalized Patients. Applied Sciences. 2022; 12(17):8735. https://doi.org/10.3390/app12178735
Chicago/Turabian StyleYordanova, Rozalina, Zvezdelina Yaneva, Deyana Gencheva, and Georgi Beev. 2022. "Antimicrobial Resistance Distribution and Quorum-Sensing Regulation of Enterococcal Strains, Isolated from Hospitalized Patients" Applied Sciences 12, no. 17: 8735. https://doi.org/10.3390/app12178735
APA StyleYordanova, R., Yaneva, Z., Gencheva, D., & Beev, G. (2022). Antimicrobial Resistance Distribution and Quorum-Sensing Regulation of Enterococcal Strains, Isolated from Hospitalized Patients. Applied Sciences, 12(17), 8735. https://doi.org/10.3390/app12178735