Towards Flexible and Cognitive Production—Addressing the Production Challenges
Abstract
:1. Introduction
2. Use Case
3. Cognitive Entities
4. Cognitive Assembly Balancing
5. Cognitive and Flexible Shop Floors
5.1. Sensing
5.2. Assembly Monitoring
5.3. Feedback
6. Cognitive Data-Driven Approach to Improve the Assembly Line
6.1. Data Contextualization
6.2. Visual Analytics
6.3. Predictive Maintenance
6.4. Causal Discovery
- ML approaches can learn to model nonlinear and complex relationships;
- In addition, once the model is trained, it can capture possible hidden relationships which enable better predictions on unseen data in the future;
- These approaches do not impose any restrictions on the input variables and their distribution.
7. Cognitive Communication and Safety on Shop Floors
7.1. Communication Systems
7.2. Safety Systems
7.2.1. Safety of the Machines and Workers
7.2.2. Dynamic Future
8. Conclusions and Outlook
- IMU sensor;
- Depth sensor;
- Head worn camera.
9. Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Sanders, A.; Elangeswaran, C.; Wulfsberg, J.P. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. J. Ind. Eng. Manag. (JIEM) 2016, 9, 811–833. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef]
- Lee, J.; Kao, H.A.; Yang, S. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp 2014, 16, 3–8. [Google Scholar] [CrossRef]
- Bacci di Capaci, R.; Scali, C. A Cloud-Based Monitoring System for Performance Assessment of Industrial Plants. Ind. Eng. Chem. Res. 2020, 59, 2341–2352. [Google Scholar] [CrossRef]
- Tran, M.Q.; Elsisi, M.; Liu, M.K.; Vu, V.; Mahmoud, K.; Darwish, M.M.F.; Abdelaziz, A.; Lehtonen, M. Reliable Deep Learning and IoT-Based Monitoring System for Secure Computer Numerical Control Machines Against Cyber-Attacks With Experimental Verification. IEEE Access 2022, 10, 23186–23197. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q.; Mahmoud, K.; Mansour, D.E.; Lehtonen, M.; Darwish, M.M.F. Towards Secured Online Monitoring for Digitalized GIS Against Cyber-Attacks Based on IoT and Machine Learning. IEEE Access 2021, 9, 78415–78427. [Google Scholar] [CrossRef]
- Vaccari, M.; Bacci di Capaci, R.; Brunazzi, E.; Tognotti, L.; Pierno, P.; Vagheggi, R.; Pannocchia, G. Implementation of an Industry 4.0 system to optimally manage chemical plant operation. IFAC-PapersOnLine 2020, 53, 11545–11550. [Google Scholar] [CrossRef]
- Vaccari, M.; Bacci di Capaci, R.; Tognotti, L.; Pierno, P.; Vagheggi, R.; Pannocchia, G. Optimally Managing Chemical Plant Operations: An Example Oriented by Industry 4.0 Paradigms. Ind. Eng. Chem. Res. 2021, 60, 7853–7867. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q.; Mahmoud, K.; Mansour, D.E.; Lehtonen, M.; Darwish, M.M.F. Effective IoT-based deep learning platform for online fault diagnosis of power transformers against cyberattacks and data uncertainties. Measurement 2022, 190, 110686. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design principles for industrie 4.0 scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- Azevedo, A.I.R.L.; Santos, M.F. KDD, SEMMA and CRISP-DM: A parallel overview. IADS-DM 2008. [Google Scholar]
- Abdul Hadi, M.; Brillinger, M.; Haas, F. Adaptive Assembly Approach for E-Axles. In Proceedings of the 4th EAI International Conference on Management of Manufacturing Systems; Knapcikova, L., Balog, M., Perakovic, D., Perisa, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 249–260. [Google Scholar]
- Abdul Hadi, M.; Brillinger, M.; Weinzerl, M. Parametric evaluation and cost analysis in an e-axle assembly layout. In Proceedings of the 5th EAI International Conference on Management of Manufacturing Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–15. [Google Scholar]
- Boysen, N.; Fliedner, M.; Scholl, A. A classification of assembly line balancing problems. Eur. J. Oper. Res. 2007, 183, 674–693. [Google Scholar] [CrossRef]
- Scholl, A.; Becker, C. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res. 2006, 168, 666–693. [Google Scholar] [CrossRef]
- Boysen, N.; Schulze, P.; Scholl, A. Assembly line balancing: What happened in the last fifteen years? Eur. J. Oper. Res. 2021. [Google Scholar] [CrossRef]
- Otto, C.; Otto, A. Multiple-source learning precedence graph concept for the automotive industry. Eur. J. Oper. Res. 2014, 234, 253–265. [Google Scholar] [CrossRef]
- Klindworth, H.; Otto, C.; Scholl, A. On a learning precedence graph concept for the automotive industry. Eur. J. Oper. Res. 2012, 217, 259–269. [Google Scholar] [CrossRef]
- Pokorni, B.; Popescu, D.; Constantinescu, C. Design of Cognitive Assistance Systems in Manual Assembly Based on Quality Function Deployment. Appl. Sci. 2022, 12, 3887. [Google Scholar] [CrossRef]
- Guiza, O.; Mayr-Dorn, C.; Mayhofer, M.; Egyed, A.; Rieger, H.; Brandt, F. Recommending Assembly Work to Station Assignment Based on Historical Data. In Proceedings of the 2021 IEEE 26th International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021. [Google Scholar]
- Behrmann, E.; Rauwald, C. Mercedes Boots Robots From the Production Line. 2016. Available online: https://www.roboticstomorrow.com/story/2016/02/mercedes-boots-robots-from-the-production-line-/7727/ (accessed on 1 February 2017).
- Hull, D. Musk Says Excessive Automation Was ‘My Mistake’. 2018. Available online: https://www.bloomberg.com/news/articles/2018-04-13/musk-tips-his-tesla-cap-to-humans-after-robots-undercut-model-3 (accessed on 19 June 2018).
- Wendemuth, A.; Biundo, S. A companion technology for cognitive technical systems. In Cognitive Behavioural Systems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 89–103. [Google Scholar]
- Trendafilov, D.; Zia, K.; Ferscha, A.; Abbas, A.; Azadi, B.; Selymes, J.; Haslgrübler, M. Cognitive Products: System Architecture and Operational Principles. In Proceedings of the Cognitive 2019 Proceedings, Venice, Italy, 5–9 May 2019; Franova, C.M., Sennersten, J.T.D., Eds.; 2019; p. 62. [Google Scholar]
- Haslgrübler, M.; Gollan, B.; Ferscha, A. A Cognitive Assistance Framework for Supporting Human Workers in Industrial Tasks. IT Prof. 2018, 20, 8. [Google Scholar] [CrossRef]
- Haslgrübler, M.; Gollan, B.; Tomay, C.; Ferscha, A.; Heftberger, J. Towards Skill Recognition using Eye-Hand Coordination in Industrial Production. In Proceedings of the12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; ACM: New York, NY, USA, 2019. [Google Scholar]
- Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Decision support model for implementing assistive technologies in assembly activities: A case study. Int. J. Prod. Res. 2022, 60, 1341–1367. [Google Scholar] [CrossRef]
- Sgarbossa, F.; Peron, M.; Fragapane, G. Cloud Material Handling Systems: Conceptual Model and Cloud-Based Scheduling of Handling Activities. In Scheduling in Industry 4.0 and Cloud Manufacturing; Sokolov, B., Ivanov, D., Dolgui, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 87–101. [Google Scholar] [CrossRef]
- Rude, D.J.; Adams, S.; Beling, P.A. A Benchmark Dataset for Depth Sensor Based Activity Recognition in a Manufacturing Process. IFAC-PapersOnLine 2015, 48, 668–674. [Google Scholar] [CrossRef]
- Bleser, G.; Damen, D.; Behera, A.; Hendeby, G.; Mura, K.; Miezal, M.; Gee, A.; Petersen, N.; Maçães, G.; Domingues, H.; et al. Cognitive learning, monitoring and assistance of industrial workflows using egocentric sensor networks. PLoS ONE 2015, 10, e0127769. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.F.; Rashidi, A.; Davenport, M.A.; Anderson, D. Audio Signal Processing for Activity Recognition of Construction Heavy Equipment. In Proceedings of the ISARC International Symposium on Automation and Robotics in Construction, Auburn, AL, USA, 18–21 July 2016; Volume 33, p. 1. [Google Scholar]
- Lenz, C.; Sotzek, A.; Röder, T.; Radrich, H.; Knoll, A.; Huber, M.; Glasauer, S. Human workflow analysis using 3D occupancy grid hand tracking in a human-robot collaboration scenario. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3375–3380. [Google Scholar] [CrossRef]
- Malaisé, A.; Maurice, P.; Colas, F.; Charpillet, F.; Ivaldi, S. Activity Recognition With Multiple Wearable Sensors for Industrial Applications. In Proceedings of the ACHI 2018—Eleventh International Conference on Advances in Computer-Human Interactions, Rome, Italy, 25–29 March 2018. [Google Scholar]
- Maekawa, T.; Nakai, D.; Ohara, K.; Namioka, Y. Toward Practical Factory Activity Recognition: Unsupervised Understanding of Repetitive Assembly Work in a Factory. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 1088–1099. [Google Scholar] [CrossRef]
- Campbell, T.; Harper, J.; Hartmann, B.; Paulos, E. Towards Digital Apprenticeship: Wearable Activity Recognition in the Workshop Setting. Technical Report No. UCB/EECS-2015-172. 2015. Available online: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-172.html (accessed on 19 June 2018).
- Reining, C.; Schlangen, M.; Hissmann, L.; ten Hompel, M.; Moya, F.; Fink, G.A. Attribute Representation for Human Activity Recognition of Manual Order Picking Activities. In Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction, Berlin, Germany, 20–21 September 2018. [Google Scholar] [CrossRef]
- Tao, W.; Lai, Z.H.; Leu, M.C.; Yin, Z. Worker Activity Recognition in Smart Manufacturing Using IMU and sEMG Signals with Convolutional Neural Networks. Procedia Manuf. 2018, 26, 1159–1166. [Google Scholar] [CrossRef]
- Avrahami, D.; Patel, M.; Yamaura, Y.; Kratz, S. Below the Surface: Unobtrusive Activity Recognition for Work Surfaces Using RF-radar Sensing. In Proceedings of the 23rd International Conference on Intelligent User Interfaces, Tokyo, Japan, 7–11 March 2018; pp. 439–451. [Google Scholar] [CrossRef]
- Al-Naser, M.; Ohashi, H.; Ahmed, S.; Nakamura, K.; Akiyama, T.; Sato, T.; Nguyen, P.; Dengel, A. Hierarchical Model for Zero-shot Activity Recognition using Wearable Sensors. In Proceedings of the 10th International Conference on Agents and Artificial Intelligence—Volume 2: ICAART, Madeira, Portugal, 16–18 January 2018; pp. 478–485. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Z.; Wu, Z. Vision-based action recognition of construction workers using dense trajectories. Adv. Eng. Inform. 2016, 30, 327–336. [Google Scholar] [CrossRef]
- Makantasis, K.; Doulamis, A.; Doulamis, N.; Psychas, K. Deep learning based human behavior recognition in industrial workflows. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1609–1613. [Google Scholar] [CrossRef]
- Voulodimos, A.; Grabner, H.; Kosmopoulos, D.; Van Gool, L.; Varvarigou, T. Robust Workflow Recognition Using Holistic Features and Outlier-Tolerant Fused Hidden Markov Models. In Proceedings of the Artificial Neural Networks—ICANN 2010, Thessaloniki, Greece, 15–18 September 2010; pp. 551–560. [Google Scholar]
- Akhavian, R.; Behzadan, A.H. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers. Adv. Eng. Inform. 2015, 29, 867–877. [Google Scholar] [CrossRef]
- Sopidis, G.; Ahmad, A.; Michael, H.; Ferscha, A. Micro-Activities Recognition and Macro Worksteps Classification for Industrial IoT Processes. In Proceedings of the 11th International Conference on the Internet of Things (IoT’21), St. Gallen, Switzerland, 8–12 November 2021; ACM: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Keselman, L.; Iselin Woodfill, J.; Grunnet-Jepsen, A.; Bhowmik, A. Intel realsense stereoscopic depth cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1–10. [Google Scholar]
- Azadi, B.; Haslgrübler, M.; Sopidis, G.; Murauer, M.; Anzengruber, B.; Ferscha, A. Feasibility analysis of unsupervised industrial activity recognition based on a frequent micro action. In Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 368–375. [Google Scholar]
- Koskimäki, H.; Huikari, V.; Siirtola, P.; Röning, J. Behavior modeling in industrial assembly lines using a wrist-worn inertial measurement unit. J. Ambient. Intell. Humaniz. Comput. 2013, 4, 187–194. [Google Scholar] [CrossRef]
- Bannat, A.; Bautze, T.; Beetz, M.; Blume, J.; Diepold, K.; Ertelt, C.; Geiger, F.; Gmeiner, T.; Gyger, T.; Knoll, A.; et al. Artificial Cognition in Production Systems. IEEE Trans. Autom. Sci. Eng. 2011, 8, 148–174. [Google Scholar] [CrossRef]
- Fantini, P.; Tavola, G.; Taisch, M.; Barbosa, J.; Leitao, P.; Liu, Y.; Sayed, M.S.; Lohse, N. Exploring the integration of the human as a flexibility factor in CPS enabled manufacturing environments: Methodology and results. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 5711–5716. [Google Scholar] [CrossRef]
- Srewil, Y.; Scherer, R.J. Effective Construction Process Monitoring and Control through a Collaborative Cyber-Physical Approach. In Collaborative Systems for Reindustrialization; Camarinha-Matos, L.M., Scherer, R.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 172–179. [Google Scholar]
- Aehnelt, M.; Bader, S. Tracking Assembly Processes and Providing Assistance in Smart Factories. In Proceedings of the ICAART 2014: International Conference on Agents and Artificial Intelligence, Angers, France, 6–8 March 2014; Volume 1, pp. 161–168. [Google Scholar]
- Tarallo, A.; Mozzillo, R.; Di Gironimo, G.; De Amicis, R. A cyber-physical system for production monitoring of manual manufacturing processes. Int. J. Interact. Des. Manuf. (IJIDeM) 2018, 12, 1235–1241. [Google Scholar] [CrossRef]
- Yerby, J. Legal and ethical issues of employee monitoring. Online J. Appl. Knowl. Manag. 2013, 1, 44–55. [Google Scholar]
- Guiza, O.; Mayr-Dorn, C.; Weichhart, G.; Mayhofer, M.; Zangi, B.B.; Egyed, A.; Fanta, B.; Gieler, M. Monitoring of Human-Intensive Assembly Processes Based on Incomplete and Indirect Shopfloor Observations. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021. [Google Scholar]
- Guiza, O.; Mayr-Dorn, C.; Weichhart, G.; Mayhofer, M.; Zangi, B.B.; Egyed, A.; Fanta, B.; Gieler, M. Automated Deviation Detection for Partially-Observable Human-Intensive Assembly Processes. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021. [Google Scholar]
- Funk, M.; Bächler, A.; Bächler, L.; Korn, O.; Krieger, C.; Heidenreich, T.; Schmidt, A. Comparing projected in-situ feedback at the manual assembly workplace with impaired workers. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 1–3 July 2015. [Google Scholar]
- Funk, M.; Kosch, T.; Kettner, R.; Korn, O.; Schmidt, A. Motioneap: An overview of 4 years of combining industrial assembly with augmented reality for industry 4.0. In Proceedings of the Conference on Knowledge Technologies and Datadriven Business, Graz, Austria, 18 October 2016. [Google Scholar]
- Dingler, T.; Schmidt, A. Peripheral displays to support human cognition. In Peripheral Interaction; Springer: Berlin/Heidelberg, Germany, 2016; pp. 167–181. [Google Scholar]
- Ziegler, J.; Heinze, S.; Urbas, L. The potential of smartwatches to support mobile industrial maintenance tasks. In Proceedings of the Conference on Emerging Technologies & Factory Automation, Luxembourg, 8–11 September 2015. [Google Scholar]
- Ong, S.K.; Nee, A.Y.C. Virtual and Augmented Reality Applications in Manufacturing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Büttner, S.; Funk, M.; Sand, O.; Röcker, C. Using head-mounted displays and in-situ projection for assistive systems: A comparison. In Proceedings of the 9th ACM International Conference on Pervasive Technologies Related to Assistive Environments, Corfu Island, Greece, 29 June–1 July 2016. [Google Scholar]
- Funk, M.; Heusler, J.; Akcay, E.; Weiland, K.; Schmidt, A. Haptic, Auditory, or Visual?: Towards Optimal Error Feedback at Manual Assembly Workplaces. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu Island, Greece, 29 June 2016–1 July 2016. [Google Scholar]
- Petzold, B.; Zaeh, M.F.; Faerber, B.; Deml, B.; Egermeier, H.; Schilp, J.; Clarke, S. A study on visual, auditory, and haptic feedback for assembly tasks. Presence Teleoperators Virtual Environ. 2004, 13, 16–21. [Google Scholar] [CrossRef]
- Wilson, J.; Walker, B.N.; Lindsay, J.; Cambias, C.; Dellaert, F. Swan: System for wearable audio navigation. In Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers, Boston, MA, USA, 11–13 October 2007; pp. 91–98. [Google Scholar]
- Carter, T.; Seah, S.A.; Long, B.; Drinkwater, B.; Subramanian, S. UltraHaptics: Multi-point mid-air haptic feedback for touch surfaces. In Symposium on User Interface Software and Technology; ACM: New York, NY, USA, 2013. [Google Scholar]
- Berning, M.; Braun, F.; Riedel, T.; Beigl, M. ProximityHat: A head-worn system for subtle sensory augmentation with tactile stimulation. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 7–11 September 2015. [Google Scholar]
- Diener, V.; Beigl, M.; Budde, M.; Pescara, E. VibrationCap: Studying vibrotactile localization on the human head with an unobtrusive wearable tactile display. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017. [Google Scholar]
- Haslgrübler, M.; Fritz, P.; Gollan, B.; Ferscha, A. Getting Through—Modality Selection in a Multi-Sensor-Actuator Industrial IoT Environment. In Proceedings of the 7th International Conference on the Internet of Things, Linz, Austria, 22–25 October 2017; p. 8. [Google Scholar] [CrossRef]
- Madison, M.; Barnhill, M.; Napier, C.; Godin, J. NoSQL Database Technologies. J. Int. Technol. Inf. Manag. 2015, 24, 1. [Google Scholar]
- Milenkovic, K.; Mayer, S.; Diwold, K.; Zehetner, J. Enabling Knowledge Management in Complex Industrial Processes Using Semantic Web Technology. In Proceedings of the 2019 International Conference on Theory and Applications in the Knowledge Economy, TAKE 2019, Vienna, Austria, 3–5 July 2019. [Google Scholar]
- Mayer, S.; Hodges, J.; Yu, D.; Kritzler, M.; Michahelles, F. An Open Semantic Framework for the Industrial Internet of Things. IEEE Intell. Syst. 2017, 32, 96–101. [Google Scholar] [CrossRef]
- Thalmann, S.; Gursch, H.G.; Suschnigg, J.; Gashi, M.; Ennsbrunner, H.; Fuchs, A.K.; Schreck, T.; Mutlu, B.; Mangler, J.; Kappl, G.; et al. Cognitive Decision Support for Industrial Product Life Cycles: A Position Paper. In Proceedings of the Cognitive 2019: The Eleventh International Conference on Advanced Cognitive Technologies and Applications, IARIA, Venice, Italy, 5–9 May 2019; pp. 3–9. [Google Scholar]
- Zhou, F.; Lin, X.; Liu, C.; Zhao, Y.; Xu, P.; Ren, L.; Xue, T.; Ren, L. A survey of visualization for smart manufacturing. J. Vis. 2019, 22, 419–435. [Google Scholar] [CrossRef]
- Sacha, D.; Stoffel, A.; Stoffel, F.; Kwon, B.C.; Ellis, G.; Keim, D.A. Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Suschnigg, J.; Ziessler, F.; Brillinger, M.; Vukovic, M.; Mangler, J.; Schreck, T.; Thalmann, S. Industrial Production Process Improvement by a Process Engine Visual Analytics Dashboard. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020. [Google Scholar]
- Abbas, A.; Haslgrübler, M.; Dogar, A.M.; Ferscha, A. Micro Activities Recognition in Uncontrolled Environments. Appl. Sci. 2021, 11, 10327. [Google Scholar] [CrossRef]
- Hashemian, H.M. State-of-the-art predictive maintenance techniques. IEEE Trans. Instrum. Meas. 2010, 60, 226–236. [Google Scholar] [CrossRef]
- Gashi, M.; Gursch, H.; Hinterbichler, H.; Pichler, S.; Lindstaedt, S.; Thalmann, S. MEDEP: Maintenance Event Detection for Multivariate Time Series Based on the PELT Approach. Sensors 2022, 22, 2837. [Google Scholar] [CrossRef]
- Sipos, R.; Fradkin, D.; Moerchen, F.; Wang, Z. Log-based predictive maintenance. In Proceeding of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1867–1876. [Google Scholar]
- Gashi, M.; Thalmann, S. Taking Complexity into Account: A Structured Literature Review on Multi-component Systems in the Context of Predictive Maintenance. In Proceedings of the European, Mediterranean, and Middle Eastern Conference on Information Systems, Dubai, United Arab Emirates, 9–10 December 2019; pp. 31–44. [Google Scholar]
- Gashi, M.; Mutlu, B.; Lindstaedt, S.; Thalmann, S. Decision support for multi-component systems: Visualizing interdependencies for predictive maintenance. In Proceedings of the 55rd Hawaii International Conference on System Sciences, Online, 3–7 January 2022; Accepted. [Google Scholar]
- Gashi, M.; Mutlu, B.; Lindstaedt, S.; Thalmann, S. No Time to Crash: Visualizing Interdependencies for Optimal Maintenance Scheduling. In Proceedings of the Cognitive 2022: The Fourteenth International Conference on Advanced Cognitive Technologies and Applications, IARIA, Barcelona, Spain, 24–28 April 2022; pp. 11–16. [Google Scholar]
- Leitner, L.; Lagrange, A.; Endisch, C. End-of-line fault detection for combustion engines using one-class classification. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 207–213. [Google Scholar]
- Gashi, M.; Ofner, P.; Ennsbrunner, H.; Thalmann, S. Dealing with missing usage data in defect prediction: A case study of a welding supplier. Comput. Ind. 2021, 132, 103505. [Google Scholar] [CrossRef]
- Gashi, M.; Mutlu, B.; Suschnigg, J.; Ofner, P.; Pichler, S.; Schreck, T. Interactive Visual Exploration of defect prediction in industrial setting through explainable models based on SHAP values. In Proceedings of the IEEE VIS Poster Program, Virtual, 25–30 October 2020. [Google Scholar]
- Vuković, M.; Thalmann, S. Causal Discovery in Manufacturing: A Structured Literature Review. J. Manuf. Mater. Process. 2022, 6, 10. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Maier, M. Causal Discovery for Relational Domains: Representation, Reasoning, and Learning. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2014. [Google Scholar]
- Mooij, J.M.; Peters, J.; Janzing, D.; Zscheischler, J.; Schölkopf, B.; Guyon, I.; Statnikov, A.; Mooij, M.; Mooij, S. Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks. arXiv 2016, arXiv:1412.3773. [Google Scholar]
- Hund, L.; Schroeder, B. A causal perspective on reliability assessment. Reliab. Eng. Syst. Saf. 2020, 195, 106678. [Google Scholar] [CrossRef]
- Vukovic, M.; Dhanoa, V.; Jäger, M.; Walchshofer, C.; Küng, J.; Krahwinkler, P.; Mutlu, B.; Thalmann, S. A Forecasting Model-Based Discovery of Causal Links of Key Influencing Performance Quality Indicators for Sinter Production Improvement. In Proceedings of the 2020 AISTech Conference Proceedings, Cleveland, OH, USA, 31 August–3 September 2020; pp. 2028–2040. [Google Scholar] [CrossRef]
- Li, G.; Qin, S.J.; Yuan, T. Data-driven root cause diagnosis of faults in process industries. Chemom. Intell. Lab. Syst. 2016, 159, 1–11. [Google Scholar] [CrossRef]
- Verron, S.; Li, J.; Tiplica, T. Fault detection and isolation of faults in a multivariate process with Bayesian network. J. Process Control 2010, 20, 902–911. [Google Scholar] [CrossRef]
- Duan, P.; Chen, T.; Shah, S.L.; Yang, F. Methods for root cause diagnosis of plant-wide oscillations. AIChE J. 2014, 60, 2019–2034. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Huang, J.; Su, C. A data similarity based analysis to consequential alarms of industrial processes. J. Loss Prev. Process Ind. 2015, 35, 29–34. [Google Scholar] [CrossRef]
- Li, J.; Shi, J. Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Trans. 2007, 39, 681–690. [Google Scholar] [CrossRef]
- Kühnert, C.; Beyerer, J. Data-Driven Methods for the Detection of Causal Structures in Process Technology. Machines 2014, 2, 255–274. [Google Scholar] [CrossRef]
- Kraus, D.; Diwold, K.; Leitgeb, E. Poster: RSSI-Based Antenna Evaluation for Robust BLE Communication in in-Car Environments. In Proceedings of the 2021 International Conference on Embedded Wireless Systems and Networks, Delft, The Netherlands, 17–19 February 2021; pp. 167–168. [Google Scholar]
- Kraus, D.; Diwold, K.; Leitgeb, E. Getting on Track – Simulation-aided Design of Wireless IoT Sensor Systems. In Proceedings of the 2020 International Conference on Broadband Communications for Next, Generation Networks and Multimedia Applications (CoBCom), Graz, Austria, 7–9 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kraus, D.; Priller, P.; Diwold, K.; Leitgeb, E. Achieving Robust and Reliable Wireless Communications in Hostile In-Car Environments. In Proceedings of the 9th International Conference on the Internet of Things (IoT), Bilbao, Spain, 22–25 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Schulz, P.; Matthe, M.; Klessig, H.; Simsek, M.; Fettweis, G.; Ansari, J.; Ashraf, S.A.; Almeroth, B.; Voigt, J.; Riedel, I.; et al. Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture. IEEE Commun. Mag. 2017, 55, 70–78. [Google Scholar] [CrossRef]
- Kraus, D.; Diwold, K.; Pestana, J.; Priller, P.; Leitgeb, E. Towards a Recommender System for In-Vehicle Antenna Placement in Harsh Propagation Environments. Sensors 2022, 22, 6339. [Google Scholar] [CrossRef]
- Macrovector: Freepik. Quality Control Isometric Composition. Available online: https://tinyurl.com/4s6d2yy6 (accessed on 10 June 2020).
- Kajmakovic, A.; Zupanc, R.; Mayer, S.; Kajtazovic, N.; Höffernig, M.; Vogl, H. Predictive Fail-Safe Improving the Safety of Industrial Environments through Model-based Analytics on hidden Data Sources. In Proceedings of the 13th IEEE International Symposium on Industrial Embedded Systems, Graz, Austria, 6–8 June 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bjetak, R.; Diwold, K.; Kajmaković, A. Retrofit: Creating Awareness in Embedded Systems—A Usecase for PLCs. In Proceedings of the 9th International Conference on the Internet of Things (IoT), Bilbao, Spain, 22–25 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Kajmakovic, A.; Diwold, K.; Kajtazovic, N.; Zupanc, R. Challenges in Mitigating Soft Errors in Safety-critical Systems with COTS Microprocessors. In Proceedings of the PESARO 2020, The Tenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications, IARIA, Lisbon, Portugal, 23–27 February 2020; pp. 1–6. [Google Scholar]
- Phoebe, V.M. Artificial Intelligence:Occupational Safety andHealth and the Future of Work; School of Business, University of Leicester: Leicester, UK, 2019. [Google Scholar]
- Bostelman, R.; Hong, T.; Eastman, R. Safety and performance standard developments for automated guided vehicles. Mob. Serv. Robot. 2014, 487–494. [Google Scholar] [CrossRef]
- Botler, L.; Diwold, K.; Römer, K. E-SALDAT: Efficient Single-Anchor Localization of Dual-Antenna Tags. In Proceedings of the 2019 16th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 23–24 October 2019; pp. 1–6. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016, arXiv:1605.07678. [Google Scholar]
- Lou, J.; Xie, S.; Zhang, W.; Yang, Y.; Liu, N.; Peng, Y.; Pu, H.; Dai, W.; Cao, N.; Chen, H.; et al. Artificial Intelligence and Safety Control. In Reconstructing Our Orders: Artificial Intelligence and Human Society; Jin, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 163–193. [Google Scholar] [CrossRef]
- Lo, N.G.; Flaus, J.M.; Adrot, O. Review of Machine Learning Approaches In Fault Diagnosis applied to IoT System. In Proceedings of the International Conference on Control, Automation and Diagnosis ICCAD’19, Grenoble, France, 2–4 July 2019; pp. 1–6. [Google Scholar]
- Mohapatra, D.; Subudhi, B.; Daniel, R. Real-time sensor fault detection in Tokamak using different machine learning algorithms. Fusion Eng. Des. 2020, 151, 111401. [Google Scholar] [CrossRef]
- Hadi, M.A.; Brillinger, M.; Wuwer, M.; Schmid, J.; Trabesinger, S.; Jäger, M.; Haas, F. Sustainable peak power smoothing and energy-efficient machining process thorough analysis of high-frequency data. J. Clean. Prod. 2021, 318, 128548. [Google Scholar]
Network Name | Accuracy |
---|---|
Baseline Inception v3 | 66.88% |
Baseline Inception v3 + RNN(LSTM) | 88.96% |
Optimized Inception v3 | 78.6% |
Optimized Inception v3 + RNN(LSTM) | 91.40% |
Baseline VGG19 | 74.62% |
Baseline VGG19 + RNN(LSTM) | 79.57% |
Optimize VGG19 | 81.32% |
Optimize VGG19 + RNN(LSTM) | 83.69% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Hadi, M.; Kraus, D.; Kajmakovic, A.; Suschnigg, J.; Guiza, O.; Gashi, M.; Sopidis, G.; Vukovic, M.; Milenkovic, K.; Haslgruebler, M.; et al. Towards Flexible and Cognitive Production—Addressing the Production Challenges. Appl. Sci. 2022, 12, 8696. https://doi.org/10.3390/app12178696
Abdul Hadi M, Kraus D, Kajmakovic A, Suschnigg J, Guiza O, Gashi M, Sopidis G, Vukovic M, Milenkovic K, Haslgruebler M, et al. Towards Flexible and Cognitive Production—Addressing the Production Challenges. Applied Sciences. 2022; 12(17):8696. https://doi.org/10.3390/app12178696
Chicago/Turabian StyleAbdul Hadi, Muaaz, Daniel Kraus, Amer Kajmakovic, Josef Suschnigg, Ouijdane Guiza, Milot Gashi, Georgios Sopidis, Matej Vukovic, Katarina Milenkovic, Michael Haslgruebler, and et al. 2022. "Towards Flexible and Cognitive Production—Addressing the Production Challenges" Applied Sciences 12, no. 17: 8696. https://doi.org/10.3390/app12178696