Estimating the Soil-Water Retention Curve of Arsenic-Contaminated Soil by Fitting Fuentes’ Model and Their Comparison with the Filter Paper Method
Abstract
:1. Introduction
2. Materials and Methods
Experimental Procedure
- The model to be used (Mualem or Burdine) was defined. For fractal analysis, the relation s = D/E that satisfies Equation (7) was obtained;
- The , and parameter values for every model to be evaluated (i.e., geometrical pore, larger pore, neutral pore, Mualem, and Burdine), were selected;
- Diameter increments of 5.5 µm, increments of 0.001 (a conditional of the loop during each iteration through the first stage), and an error of 0.03 (which means a coefficient of determination of 0.97) were established;
- The grain-size data for each contaminant concentration (i.e., 0 mg/kg, 25 mg/kg, and 50 mg/kg), which corresponds to experimental frequency (0 to 1) and diameter (µm), was introduced;
- For the first iteration, an initial diameter of 1 µm and an initial value of 0.001 for the parameter were used. Then, those parameters are evaluated in Equation (3) for the entire data of the grain size analysis, obtaining a proposed frequency;
- If the error is less than or equal to 0.03 (as previously defined), the parameters and are obtained to evaluate Equation (1), assuming as the unknown value. In other cases, a new diameter (Diameter = diameter + increment) and parameter value ( = + increment) are proposed, and the process is repeated from step 5.
3. Results
3.1. Evaluation of the SWRC Using Fuentes’ Model
3.2. Comparison of the Simulated and Filter Paper Method SWRC
3.3. Comparison of the HCF Obtained by the Simulated and the Filter Paper Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volke, T.; Velasco, A.; de la Rosa, A. Suelos Contaminados por Metales y Metaloides: Muestreo y Alternativas Para su Remediación, 1st ed.; Instituto Nacional de Ecología (INE-Semarnat): Ciudad de México, Mexico, 2005; pp. 19–31.
- Kabata-Pendias, A.; Mukherjee, A. Trace Elements from Soil to Human; Springer Nature: Berlin, Germany, 2007. [Google Scholar]
- Su, C.; Meng, J.; Zhou, Y.; Bi, R.; Chen, Z.; Diao, J.; Huang, Z.; Kan, Z.; Wang, T. Heavy Metals in Soils from Intense Industrial Areas in South China: Spatial Distribution, Source Apportionment, and Risk Assessment. Front. Environ. Sci. 2022, 10, 820. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Dai, Y.; Dai, B. Contaminant transport in a largely-deformed aquitard affected by delayed drainage. J. Contam. Hydrol. 2019, 221, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.; Selladurai, R.; Coumar, M.; Dotaniya, M.; Kundu, S.; Patra, A. Assessment of Heavy Metals Contamination in Soil. In Soil Pollution—An Emerging Threat to Agriculture; Environmental Chemistry for a Sustainable World; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer Nature: Singapore, 2017; Volume 10. [Google Scholar]
- Pusz, A.; Wisniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. [Google Scholar] [CrossRef]
- Wang, L.; Veysel, E.; Ferruh, E. Handbook of Advanced Industrial and Hazardous Wastes Treatment; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Tack, F.; Bardos, P. Overview of Soil and Groundwater Remediation. In Soil and Groundwater Remediation Technologies; Ok, Y.S., Rinklebe, J., Hou, D., Tsang, D.C.W., Tack, F.M.G., Eds.; Taylor & Francis: Oxfordshire, UK, 2020. [Google Scholar]
- GWRTAC. Remediation of Metals-Contaminated Soils and Groundwater; Department of Civil and Environmental Engineering: Pittsburgh, PA, USA, 1997; pp. 2–13. [Google Scholar]
- Markiewicz-Patkowska, J.; Hursthouse, A.; Przybyla-Kij, H. The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environ. Int. 2005, 31, 513–521. [Google Scholar] [CrossRef]
- Twaddle, N.C.; Vanlandingham, M.; Beland, F.A.; Deorge, D.R. Metabolism and disposition of arsenic species from con-trolled dosing with dimethylarsinic acid (DMAV) in adult female CD-1 mice.V. toxicokinetic studies following oral and intra-venous administration. Food Chem. Toxicol. 2019, 130, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Paul, B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Zia, Z.; Abbas, S.; Hammad, H.M.; Shah, G.M.; Khalid, S.; Shahid, N.; Sajjad, M.; Fahad, S. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems. Groundw. Sustain. Dev. 2019, 9, 100263. [Google Scholar] [CrossRef]
- Cebrian, M.E.; Coreño, O.; Nava, J.L. Chronic Arsenic Poisoning in the North of Mexico. Hum. Toxicol. 1983, 2, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Fayiga, A.O.; Saha, U.K. Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma 2016, 284, 132–143. [Google Scholar] [CrossRef]
- López-Guzmán, M.; Alarcón-Herrera, M.T.; Irigoyen-Campuzano, J.R.; Torres-Castañón, L.A.; Reynoso-Cuevas, L. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Sci. Total Environ. 2019, 678, 181–187. [Google Scholar] [CrossRef]
- Jiménez, B.; Rodríguez-Estrella, R.; Merino, R.; Gómez, G.; Rivera, L.; González, M.; Abad, E.; Rivera, J. Results and evaluation of the first study of organochlorine contaminants (PCDDs, PCDFs, PCBs and DDTs), heavy metals and metalloids in birds from Baja California, México. Environ. Pollut. 2005, 133, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Howell, G.; Hill, C. Biological interaction of selenium and other trace elements in chicks. Environ. Health Persp. 1978, 25, 147–150. [Google Scholar] [CrossRef]
- Brusseau, M.; Pepper, I.; Gerba, C. Environmental and Pollution Science, 3rd ed.; Academic Press: London, UK, 2019; pp. 175–190. [Google Scholar] [CrossRef]
- Rahardjo, H.; Kim, Y.; Satyanaga, A. Role of unsaturated soil mechanics in geotechnical engineering. Int. J. Geotech. Eng. 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Horta, J.; Rojas, E.; Pérez-Rea, M.L.; López, T.; Zaragoza, J.B. A random solid-porous model to simulate the retention curves of soils. Int. J. Numer. Anal. Methods Geomech. 2012, 37, 932–944. [Google Scholar] [CrossRef]
- Alshawabkeh, A.N.; Rahbar, N. Parametric Study of One-Dimensional Solute Transport in Deformable Porous Media. J. Geotech. Geoenviron. Eng. 2006, 132, 1001–1010. [Google Scholar] [CrossRef]
- Hernández-Mendoza, C.E.; García, P.; Chávez, O. Geotechnical Evaluation of Diesel Contaminated Clayey Soil. Appl. Sci. 2021, 11, 6451. [Google Scholar] [CrossRef]
- Cabello-Suárez, Y.L. Análisis Comparativo de Curvas de Retención de Suelos Contaminados con Gasolina y Diesel. Bachelor’s Thesis, Universidad Autónoma de Querétaro, Querétaro, Mexico, 2015. [Google Scholar]
- Huffer, T.; Metzlder, F.; Sigmund, G.; Slawek, S.; Schmidt, T.C.; Hofmann, T. Polyethylene microplastics influence the transport of organic contaminants in soil. Sci. Total Environ. 2019, 657, 242–247. [Google Scholar] [CrossRef]
- Pan, H.; Qing, Y.; Pei-Yong, L. Direct and indirect measurement of soil suction in the laboratory. Electron. J. Geotech. Eng. 2010, 15, 1–14. [Google Scholar]
- Eyo, E.U.; Ng’ambi, S.; Abbey, S.J. Effect of intrinsic microscopic properties and suction on swell characteristics of compacted expansive clays. Transp. Geotech. 2019, 18, 124–131. [Google Scholar] [CrossRef]
- Chen, L.; Bulut, R.; Zaman, M. A study of tensile stress with suction by restrained ring method. Transp. Geotech. 2020, 23, 100306. [Google Scholar] [CrossRef]
- Vásquez-Nogal, I.; Hernández-Mendoza, C.E. Evaluation of the Soil–Water Retention Curve of Arsenic-Contaminated Soil by the Filter Paper Method. Appl. Sci. 2022, 12, 2610. [Google Scholar] [CrossRef]
- ASTM D5298-16; Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM International: West Conshohocken, PA, USA, 2016.
- Fuentes, C. Approche Fractale des Transferts Hydriques Dans les Sols Non Satures. Ph.D. Thesis, University Joseph Fourier, Grenoble, France, 1992. [Google Scholar]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.T.; Leij, F.; Yates, S.; Williams, J. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; U.S. Department of Agriculture, Agricultural Research Service: Riverside, CA, USA, 1991.
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Zavala, M.; Saucedo, H.; Fuentes, C. Fractal analytical models for the hydraulic properties of unsaturated soils. Agrociencia 2018, 52, 1059–1070. [Google Scholar]
- Fuentes, C.; Chávez, C.; Brambila, F. Conductivity Curve to Soil-Water Retention Curve Using a Fractal Model. Mathematics 2020, 8, 2201. [Google Scholar] [CrossRef]
- Crawford, J.W.; Pachepsky, Y.A.; Rawls, W.J. Integrating processes in soils using fractal models. Dev. Soil Sci. 2000, 27, 1–5. [Google Scholar] [CrossRef]
- Rieu, M.; Perrier, E. Fractal Models of Fragmented and Aggregated Soils. In Fractals in Soil Science, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 1998; pp. 169–202. [Google Scholar]
- Fuentes, C.; Rendón, L. Riego por gravedad, 1st ed.; Asociación Nacional de Especialistas en Irrigación: Ciudad de Mexico, Mexico, 2017; pp. 107–116. [Google Scholar]
- Di Bucchianico, A. Coefficient of Determination (R2). In Encyclopedia of Statistics in Quality and Reliability; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 1. [Google Scholar] [CrossRef]
- Taban, A.; Mirmohammad-Sadeghi, M.; Rowshanzamir, M.A. Estimation of van Genuchten SWCC model for unsaturated sands by means of the genetic programming. Int. J. Sci. Environ. Technol. 2018, 25, 2026–2038. [Google Scholar] [CrossRef] [Green Version]
Model Restriction | Equivalent Particle Diameter (µm) | ||
---|---|---|---|
As 1: 0 mg/kg 2 | As: 25 mg/kg | As: 50 mg/kg | |
Burdine | 2264.30 ± 21.40 (0.971) 3 | 2580.00 ± 305.40 (0.970) | 2298.50 ± 78.10 (0.971) |
Mualem | 2267.70 ± 33.30 (0.970) | 2238.20 ± 50.80 (0.970) | 2336.00 ± 57.70 (0.971) |
Geometric pore | 2181.00 ± 43.60 (0.970) | 2230.00 ± 171.70 (0.970) | 2408.20 ± 74.90 (0.970) |
Neutral pore | 2527.70 ± 30.60 (0.970) | 2589.70 ± 233.40 (0.970) | 2524.30 ± 30.60 (0.970) |
Larger pore | 2630.20 ± 40.20 (0.972) | 2838.50 ± 412.70 (0.971) | 2646.80 ± 83.20 (0.971) |
Arsenic Concentration | ||||||
---|---|---|---|---|---|---|
Filter-Paper SWRC | Burdine | Mualem | Geometric Pore | Neutral Pore | Larger Pore | |
0 mg/kg | 1.44 ± 0.03 | 2.96 ± 0.01 | 1.83 ± 0.02 | 1.96 ± 0.02 | 3.33 ± 0.08 | 3.87 ± 0.02 |
25 mg/kg | 1.19 ± 0.00 | 2.78 ± 0.06 | 1.77 ± 0.08 | 1.89 ± 0.06 | 3.26 ± 0.06 | 3.83 ± 0.08 |
50 mg/kg | 1.18 ± 0.01 | 2.88 ± 0.04 | 1.88 ± 0.04 | 1.96 ± 0.03 | 3.31 ± 0.02 | 3.86 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez-Nogal, I.; Hernández-Mendoza, C.E.; Cárdenas-Robles, A.I.; Rojas-González, E. Estimating the Soil-Water Retention Curve of Arsenic-Contaminated Soil by Fitting Fuentes’ Model and Their Comparison with the Filter Paper Method. Appl. Sci. 2022, 12, 7793. https://doi.org/10.3390/app12157793
Vásquez-Nogal I, Hernández-Mendoza CE, Cárdenas-Robles AI, Rojas-González E. Estimating the Soil-Water Retention Curve of Arsenic-Contaminated Soil by Fitting Fuentes’ Model and Their Comparison with the Filter Paper Method. Applied Sciences. 2022; 12(15):7793. https://doi.org/10.3390/app12157793
Chicago/Turabian StyleVásquez-Nogal, Ismael, Christian E. Hernández-Mendoza, Arely I. Cárdenas-Robles, and Eduardo Rojas-González. 2022. "Estimating the Soil-Water Retention Curve of Arsenic-Contaminated Soil by Fitting Fuentes’ Model and Their Comparison with the Filter Paper Method" Applied Sciences 12, no. 15: 7793. https://doi.org/10.3390/app12157793
APA StyleVásquez-Nogal, I., Hernández-Mendoza, C. E., Cárdenas-Robles, A. I., & Rojas-González, E. (2022). Estimating the Soil-Water Retention Curve of Arsenic-Contaminated Soil by Fitting Fuentes’ Model and Their Comparison with the Filter Paper Method. Applied Sciences, 12(15), 7793. https://doi.org/10.3390/app12157793