Aronia Extracts in the Production of Confectionery Masses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Biological Material
2.3. Extract Characterization
2.3.1. Total Polyphenols and Flavonoids by Folin–Ciocalteu
2.3.2. Total Tannins by Folin–Ciocalteu
2.3.3. Total Anthocyanins
2.3.4. HPLC Analysis of Polyphenols
2.3.5. HPLC Analysis of Anthocyanins
2.3.6. Quantification of Organic Acids
2.3.7. Antioxidant Activity by Reaction with DPPH Radical
2.3.8. Color Parameters (CIELab)
2.4. Confectionery Masses Making
2.5. Confectionery Masses Analysis
2.5.1. Sensory Analysis
2.5.2. Physicochemical Analysis
2.5.3. Fat Content
2.5.4. Reducing Substance Content
2.5.5. Microbiological Analysis
2.5.6. In Vitro Antioxidant Activity of Confectionery Masses
2.5.7. Color Parameters of Confectionery Masses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Aronia Extract
3.1.1. Phenolic Content in the Aronia Extract
3.1.2. Anthocyanin Content in the Aronia Extract
3.1.3. Organic Acids in the Aronia Extract
3.1.4. Antioxidant Activity in the Aronia Extract
3.1.5. CIELab Chromatic Parameters
3.2. Confectionery Masses Characterization
3.2.1. Sensory Profile of the Confectionary Masses
3.2.2. Influence of Aronia on the Moisture Content
3.2.3. pH Variation in the Confectionery Masses
3.2.4. Water Activity in Confectionary Masses
3.2.5. Fat Content in the Confectionery Masses
3.2.6. Reducing Substance Content in the Confectionery Masses
3.2.7. Total Viable Count in the Confectionery Masses
3.2.8. DPPH Antioxidant Activity of Confectionery Masses
3.2.9. CIElab Chromatic Parameters of the Confectionery Masses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wathon, M.H.; Beaumont, N.; Benohoud, M.; Blackburn, R.; Rayner, C. Extraction of anthocyanins from Aronia melanocarpa skin waste as a sustainable source of natural colorants. J. Soc. Dye. Colour. 2019, 135, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, K.; Howard, L.R.; Brownmiller, C.; Prior, R.L. Changes in Chokeberry (Aronia melanocarpa L.) Polyphenols during juice processing and storage. J. Agric. Food Chem. 2014, 62, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Kulling, S.; Rawel, H. Chokeberry (Aronia melanocarpa)—A reviewon the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristea, E.; Sturza, R.; Jauregi, P.; Niculaua, M.; Ghendov-Moşanu, A.; Patras, A. Influence of pH and ionic strength on the color parameters and antioxidant properties of an ethanolic red grape marc extract. J. Food Biochem. 2019, 43, e12788. [Google Scholar] [CrossRef]
- Tolić, M.T.; Marković, K.; Vahčić, N.; Samarin, I.R.; Mačković, N.; Krbavčić, I.P. Polyphenolic profile of fresh chokeberry and chokeberry products. Croat. J. Food Technol. Biotechnol. Nutr. 2018, 13, 147–153. [Google Scholar]
- Kim, D.W.; Han, H.A.; Kim, J.K.; Kim, D.H.; Kim, M.K. comparison of phytochemicals and antioxidant activities of berries cultivated in Korea: Identification of phenolic compounds in aronia by HPLC/Q-TOF MS. Prev. Nutr. Food Sci. 2021, 26, 459–468. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanov, C.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: In vitro and in vivo evidences and possible mechanisms of action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Parfenov, A.; Sharonova, N.; Nikitin, E.; Zobov, V. Radical scavenging actions and immunomodulatory activity of Aronia melanocarpa propylene glycol extracts. Plants 2021, 10, 2458. [Google Scholar] [CrossRef]
- Banach, M.; Wiloch, M.; Zawada, K.; Cyplik, W.; Kujawski, W. Evaluation of antioxidant and anti-inflammatory activity of anthocyanin-rich water-soluble Aronia dry extracts. Molecules 2020, 25, 4055. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavova, J. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, L.; Xu, Q.; Wang, Y.; Li, Z.; Zhou, W.; Meng, X. Anthocyanin-rich phenolic extracts of black chokeberry (Aronia melanocarpa) inflammation induced by lipopolysaccharide in raw 264.7 cells. Appl. Ecol. Environ. Res. 2021, 19, 581–596. [Google Scholar] [CrossRef]
- Liepiņa, I.; Nikolajeva, V.; Jākobsone, I. Antimicrobial activity of extracts from fruits of Aronia melanocarpa and Sorbus aucuparia. Environ. Exp. Biol. 2013, 11, 195–199. [Google Scholar]
- Ghendov-Moșanu, A. Biologically Active Compounds of Horticultural Origin for Functional Foods; TUM: Chisinau, Moldova, 2018; p. 236. (In Romanian) [Google Scholar]
- Dey, S.; Nagababu, B.H. Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year- old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Sturza, R.; Niculaua, M.; Patras, A. Synthetic dye’s substitution with chokeberry extract in jelly candies. J. Food Sci. Technol. 2020, 57, 4383–4394. [Google Scholar] [CrossRef]
- Opriș, O.; Lung, I.; Soran, L.; Sturza, R.; Ghendov-Moșanu, A. Fondant candies enriched with antioxidants from aronia berries and grape marc. Rev. Chim. 2020, 71, 74–79. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A. Obtaining and Stabilizing Dyes, Antioxidants and Preservatives of Plant Origin for Functional Foods. Ph.D. Thesis, Technical University of Moldova, Chisinau, Moldova, 2021; p. 72. Available online: http://www.cnaa.md/files/theses/2021/56994/aliona_-mosanu_abstract_en.pdf (accessed on 28 April 2022).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Spranger, I.; Sun, B.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J. Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem. 2008, 108, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites, Ecological Methods and Concepts; Wiley-Blackwell: Hoboken, NJ, USA, 1994; p. 248. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterisation and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar]
- OIV Method OIV-MA-AS315-11: R2007. In HPLC-Determination of Nine Major Anthocyanins in Red and Rosé Wine; International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2021; Volume 2, 13p.
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The influence of temperature, storage conditions, pH, and ionic strength on the antioxidant activity and color parameters of rowan berries extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- OIV Method OIV-MA-AS2-11: R2006. In Determination of Chromatic Characteristics according to CIELab; International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2013; Volume 1.
- ISO 6658:2017; Sensory Analysis. Methodology. General Guidance. International Organization for Standardization: Geneva, Switzerland, 2017.
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- ISO 19660:2018; Cream—Determination of Fat Content—Acido-Butyrometric Method. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 4833-2:2013/COR 1:2014; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique—Technical Corrigendum 1. International Organization for Standardization: Geneva, Switzerland, 2014.
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose hips, a valuable source of antioxidants to improve gingerbread characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef]
- Ścibisz, I.; Ziarno, M.; Mitek, M. Color stability of fruit yogurt during storage. J. Food Sci. Technol. 2019, 56, 1997–2009. [Google Scholar] [CrossRef] [Green Version]
- Vinogradova, Y.; Vergun, O.; Grygorieva, O.; Ivanišová, E.; Brindza, J. Comparative analysis of antioxidant activity and phenolic compounds in the fruits of Aronia spp. Potravin. Slovak J. Food Sci. 2020, 14, 393–401. [Google Scholar] [CrossRef]
- Lazarova, M.P.; Dimitrov, K.I.; Nikov, I.S.; Dzhonova, D.B. Polyphenols extraction from black chokeberry wastes. Bulg. Chem. Commun. 2016, 48, 442–445. [Google Scholar]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef] [Green Version]
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia plants: A review of traditional use, biological activities, and perspectives for modern medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Gralec, M.; Wawer, I.; Zawada, K. Aronia melanocarpa: Phenolics composition and antioxidant properties changes during fruit development and ripening. Emir. J. Food Agric. 2019, 31, 214–221. [Google Scholar]
- Tolić, M.T.; Landeka Jurčević, I.; Panjkota Krbavčić, I.; Marković, K.; Vahčić, N. Phenolic content, antioxidant activity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Mladin, P.; Mladin, G.; Oprea, E.; Rădulescu, M.; Nicola, C. Variability of the anthocyanins and tannins in berries of some Lonicera caerulea var. Kamchatica, Aronia melanocarpa and Berberis thunbergii var. atropurpurea Genotypes. Sci. Pap. Res. Inst. Fruit Grow. 2011, 27, 6. [Google Scholar]
- Ciocoiu, M.; Badescu, L.; Miron, A.; Badescu, M. The involvement of a polyphenol-rich extract of black chokeberry in oxidative stress on experimental arterial hypertension. Evid. Based Complementary Altern. Med. 2013, 2013, 912769. [Google Scholar]
- Nowak, D.; Gośliński, M.; Wojtowicz, E. Comparative analysis of the antioxidant capacity of selected fruit juices and nectars: Chokeberry juice as a rich source of polyphenols. Int. J. Food Prop. 2016, 19, 1317–1324. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.; Heinonen, M.; Kärenlampi, S.; Mykkänen, H.; Ruuskanen, J.; Törrönen, R. Screeningof selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 1999, 32, 345–353. [Google Scholar] [CrossRef]
- Park, H.M.; Hong, J.H. Physiological activities of Aronia melanocarpa extracts on extraction solvents. Korean J. Food Preserv. 2014, 21, 718–726. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Medvidović-Kosanović, M.; Novak, I. Antioxidant activity and polyphenols of Aronia in comparison to other berry species. Agric. Conspec. Sci. 2007, 7, 301–306. [Google Scholar]
- McGhie, T.K.; Walton, M.C. The bioavailabity and absorption of anthocyanins: Towards a better understanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [Google Scholar] [CrossRef]
- Raffo, A.; Paoletti, F.; Antonelli, M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three sea buckthorn (Hippophaer hamnoides L.) cultivars. Eur. Food Res. Technol. 2004, 219, 360–368. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Zieliński, J.; Mielcarek, S. Flavonoid and organic acid content in rose hips (rosal., sect. caninaedc. em. christ.). Acta Biol. Crac. 2012, 54, 105–112. [Google Scholar]
- Koca, I.; Karadeniz, B. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci. Hortic. 2009, 121, 447–450. [Google Scholar] [CrossRef]
- Pilerood, S.A.; Prakash, J. Evaluation of nutritional composition and antioxidant activity of Borage (Echium amoenum) and Valerian (Valerian officinalis). J. Food Sci. Technol. 2014, 51, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molaveisi, M.; Beigbabaei, A.; Akbari, E.; Noghabi, M.S.; Mohamadi, M. Kinetics of temperature effect on antioxidant activity, phenolic compounds and color of Iranian jujube honey. Heliyon 2019, 5, e01129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.; Lewin, G. Photochemiluminescent detection of antiradical activity: VII. Comparison with a modified method of thermos-initiated free radical generation with chemiluminescent detection. Luminescence 2005, 20, 321–325. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Dolatowska-Żebrowska, K.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Comparison of thermal characteristics and fatty acids composition in raw and roasted cocoa beans from Peru (Criollo) and Ecuador (Forastero). Appl. Sci. 2021, 11, 2698. [Google Scholar] [CrossRef]
- Mohamad, R.; Agus, B.A.P.; Hussain, N. Changes of phytosterols, rheology, antioxidant activity and emulsion stability of salad dressing with cocoa butter during storage. Food Technol. Biotechnol. 2019, 57, 59–67. [Google Scholar] [CrossRef]
- Wills, D. Water activity and its importance in making candy. Manuf. Confect. 1998, 78, 71–74. [Google Scholar]
- Tanaka, T.; Tanaka, A. Chemical components and characteristics of black chokeberry. J. Jpn. Soc. Food Sci. Technol. 2001, 48, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Y.; Liu, X.; Chen, X.; Ding, C.; Dong, L.; Zhang, J.; Sun, S.; Ding, Q.; Khatoom, S.; et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. J. Future Foods 2021, 1, 168–178. [Google Scholar] [CrossRef]
- GD No. 204 from 11-03-2009 Regarding the Approval of the Technical Regulation “Confectionery Products”. Available online: https://www.legis.md/cautare/getResults?doc_id=114289&lang=ro (accessed on 20 April 2022).
- Cisowska, A.; Wojnicz, D.; Hendrich, A. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 2011, 6, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics a Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Daoutidou, M.; Plessas, S.; Alexopou-los, A.; Mantzourani, I. Assessment of antimicrobial activity of pomegranate, cranberry, and black chokeberry extracts against foodborne pathogens. Foods 2021, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.D.; Leal, I.C.R.; Amaral, A.C.F.; dos Santos, K.R.N.; da Silva, M.G.; Kuster, R.M. Antimicrobial ellagitannin of Punica granutum fruits. J. Braz. Chem. Soc. 2002, 13, 606–610. [Google Scholar] [CrossRef]
- GD No. 221 from 16-03-2009 Regarding the Approval of the Rules on Criteria Microbiological for Food. Available online: https://www.legis.md/cautare/getResults?doc_id=119439&lang=ro (accessed on 25 April 2022).
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 16275016. [Google Scholar] [CrossRef] [Green Version]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
Compound | Max Absorption (nm) | Retention Time (min) |
---|---|---|
Gallic acid | 280 | 5.294 |
Protocatechuic acid | 256 | 9.267 |
p-Hydroxybenzoic acid | 256 | 13.918 |
Procyanidin B1 | 280 | 16.704 |
m-Hydroxybenzoic acid | 280 | 17.989 |
Catechin | 280 | 18.53 |
Vanillic acid | 324 | 22.871 |
Procyanidin B2 | 280 | 23.433 |
Syringic acid | 280 | 25.002 |
Epicatechin | 280 | 26.836 |
p-Coumaric acid | 324 | 29.695 |
Ferulic acid | 324 | 36.233 |
Salicylic acid | 280 | 36.995 |
Polydatin | 280 | 38.234 |
Sinapic acid | 324 | 38.564 |
Hyperoside | 288 | 47.305 |
trans-Resveratrol | 324 | 49.333 |
cis-Resveratrol | 324 | 57.089 |
Ferulic acid methyl ester | 365 | 57.754 |
Compound | Cyanidol-3-galactozide | Cyanidol-3-arabinozide | Cyanidol-3-glucoside | Petunidol-3-glucoside |
Retention Time (min) | 8.862 | 9.805 | 10.593 | 11.034 |
Indices | Quantity |
---|---|
Polyphenols | |
Total polyphenol content (mg gallic acid equivalents (GAE)/100 g DW) | 5522 ± 125 |
Total flavonoid content (mg GAE/100 g DW) | 5071 ± 68 |
Tannin content, (mg tannic acid equivalents (TAE)/100 g DW) | 549.2 ± 15.6 |
Gallic acid (µg/100 g DW) | 20.97 ± 0.63 |
m-Hydroxybenzoic acid (µg/100 g DW) | 6.99 ± 0.43 |
Protocatechuic acid (µg/100 g DW) | 101.08 ± 0.98 |
p-Hydroxybenzoic acid (µg/100 g DW) | 11.29 ± 0.21 |
Syringic acid (µg/100 g DW) | 2.69 ± 0.05 |
Ferulic acid (µg/100 g DW) | 296.24 ± 1.21 |
Sinapic acid (µg/100 g DW) | 4.30 ± 0.02 |
Catechin (µg/100 g DW) | 828.49 ± 14.32 |
Epicatechin (µg/100 g DW) | 252.69 ± 3.56 |
p-Coumaric acid (µg/100 g DW) | 3.23 ± 0.35 |
Vanillic acid (µg/100 g DW) | 4.84 ± 0.24 |
Salicylic acid (µg/100 g DW) | 142.47 ± 1.92 |
Hyperoside (µg/100 g DW) | 52.15 ± 0.68 |
Procyanidin B1 (µg/100 g DW) | 14.52 ± 0.21 |
Procyanidin B2 (µg/100 g DW) | 6.45 ± 0.09 |
Polydatin (µg/100 g DW) | 68.28 ± 0.26 |
trans-Resveratrol (µg/100 g DW) | 0.27 ± 0.04 |
cis-Resveratrol (µg/100 g DW) | 0.59 ± 0.05 |
Ferulic acid methyl ester (µg/100 g DW) | 79.57 ± 0.97 |
Anthocyanins | |
Total anthocyanin content (mg cyanidin-3-glucoside equivalents (CGE)/100 g DW) | 412.0 ± 1.1 |
Cyanidol-3-galactozide (mg/100 g DW) | 263.7 ± 1.8 |
Cyanidol-3-arabinozide (mg/100 g DW) | 125.7 ± 1.4 |
Cyanidol-3-glucoside (mg/100 g DW) | 11.5 ± 0.5 |
Petunidol-3-glucoside (mg/100 g DW) | 11.1 ± 0.9 |
Organic acids | |
Malic acid (mg/100 g DW) | 4836 ± 15 |
Citric acid (mg/100 g DW) | 362 ± 9 |
Ascorbic acid (mg/100 g DW) | 66 ± 3 |
Acetic acid (mg/100 g DW) | 312 ± 10 |
Antioxidant activity | |
Antioxidant activity (DPPH) (mmol trolox equivalents (TE)/100 g DW) | 191.66 ± 5.32 |
CIELab Chromatic Parameters | |
L* | 30.21 ± 0.17 |
a* | 34.72 ± 0.05 |
b* | 9.46 ± 0.08 |
C* | 36.00 ± 0.06 |
H*,° | 15.2 ± 0.3 |
Quality Indicators | Confectionary Masses | |||||
---|---|---|---|---|---|---|
Control | CMAE | CMAEP | ||||
1st Day | 50th Day | 1st Day | 50th Day | 1st Day | 50th Day | |
Sensory profile total score | 17.31 ± 0.15 a,b | 16.90 ± 0.12 a | 19.71 ± 0.04 c | 18.59 ± 0.08 c | 24.85 ± 0.05 e | 23.76 ± 0.07 d,e |
Appearance | 3.51 ± 0.03 a | 3.49 ± 0.05 a | 4.22 ± 0.02 b | 4.14 ± 0.04 b | 5.00 ± 0.0 c | 5.00 ± 0.0 c |
Taste | 3.05 ± 0.04 a | 3.00 ± 0.01 a | 3.91 ± 0.02 b | 3.83 ± 0.03 b | 5.00 ± 0.0 c | 4.80 ± 0.05 c |
Odor | 3.08 ± 0.03 a | 3.02 ± 0.02 a | 3.52 ± 0.01 c | 3.31 ± 0.03 b | 4.85 ± 0.01 e | 4.40 ± 0.0 d |
Color | 3.61 ± 0.04 b | 3.58 ± 0.03 b | 3.91 ± 0.03 c | 3.45 ± 0.02 a | 5.00 ± 0.0 e | 4.78 ± 0.05 d |
Consistency | 4.06 ± 0.06 b,c | 3.81 ± 0.05 a | 4.15 ± 0.06 c | 3.86 ± 0.04 a,b | 5.00 ± 0.0 e | 4.78 ± 0.03 d |
Moisture content (%) | 6.23 ± 0.14 b | 6.20 ± 0.10 b | 6.21 ± 0.12 b | 6.19 ± 0.10 b | 4.12 ± 0.07 a | 4.10 ± 0.09 a |
Active acidity pH | 6.12 ± 0.07 e | 5.86 ± 0.08 c,d | 6.02 ± 0.06 d,e | 5.75 ± 0.07 c | 5.30 ± 0.03 b | 4.78 ± 0.05 a |
Water activity (aw) (c. u.) | 0.697 ± 0.003 c,d | 0.695 ± 0.002 c,d | 0.695 ± 0.002 c,d | 0.691 ± 0.001 c | 0.672 ± 0.003 a,b | 0.667 ± 0.002 a |
Fat content (g/100 g) | 53.2 ± 0.8 c | nd | 50.6 ± 1.1 b,c | nd | 43.2 ± 1.2 a | nd |
Mass fraction of the reducing substances (%) | 11.99 ± 0.06 a | nd | 12.79 ± 0.01 b | nd | 13.59 ± 0.05 c | nd |
Total viable count (TVC)*(CFU/g) | 8 ± 2 a | 60 ± 0 c | 8 ± 1 a | 57 ± 3 c | 5 ± 1 a | 41 ± 1 b |
Antioxidant activity DPPH (µm TE/100 g) | 3.96 ± 0.21 b | 1.61 ± 0.35 a | 4.57 ± 0.39 b | 1.78 ± 0.42 a | 8.15 ± 0.53 c | 4.66 ± 0.31 b |
L* | 92.05 ± 1.42 c | 94.11 ± 1.86 c | 76.45 ± 1.21 b | 81.45 ± 1.34 b | 19.74 ± 1.15 a | 23.17 ± 0.90 a |
a* | −0.20 ± 0.15 a | −1.08 ± 0.43 a | 32.47 ± 1.15 c | 25.00 ± 1.12 b | 36.17 ± 1.09 d | 28.14 ± 1.08 b,c |
b* | 10.18 ± 0.96 b | 5.01 ± 0.53 a | 42.36 ± 0.78 d | 36.41 ± 0.59 c | 5.98 ± 0.24 a | 9.00 ± 0.71 b |
C* | 10.18 ± 1.04 b | 5.12 ± 0.67 a | 53.37 ± 0.85 f | 44.17 ± 0.64 e | 36.66 ± 0.74 d | 29.54 ± 0.45 c |
H* (°) | 91.1 ± 0.97 d | 102.2 ± 1.45 d | 52.5 ± 0.86 c | 55.5 ± 1.54 c | 9.40 ± 0.8 a | 17.74 ± 1.78 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghendov-Mosanu, A.; Ungureanu-Iuga, M.; Mironeasa, S.; Sturza, R. Aronia Extracts in the Production of Confectionery Masses. Appl. Sci. 2022, 12, 7664. https://doi.org/10.3390/app12157664
Ghendov-Mosanu A, Ungureanu-Iuga M, Mironeasa S, Sturza R. Aronia Extracts in the Production of Confectionery Masses. Applied Sciences. 2022; 12(15):7664. https://doi.org/10.3390/app12157664
Chicago/Turabian StyleGhendov-Mosanu, Aliona, Mădălina Ungureanu-Iuga, Silvia Mironeasa, and Rodica Sturza. 2022. "Aronia Extracts in the Production of Confectionery Masses" Applied Sciences 12, no. 15: 7664. https://doi.org/10.3390/app12157664
APA StyleGhendov-Mosanu, A., Ungureanu-Iuga, M., Mironeasa, S., & Sturza, R. (2022). Aronia Extracts in the Production of Confectionery Masses. Applied Sciences, 12(15), 7664. https://doi.org/10.3390/app12157664