A New Solving Method Based on Simulated Annealing Particle Swarm Optimization for the Forward Kinematic Problem of the Stewart–Gough Platform
Abstract
:1. Introduction
2. Kinematics Analysis
2.1. Configuration and Coordinate System of SGP
2.2. Inverse Kinematic Analysis
2.3. Forward Kinematic Problem
2.4. Newton–Raphson Method for FKP
- (1)
- Set the initial value , maximum iterations N, and the target accuracy . Set k = 0.
- (2)
- Solve .
- (3)
- If , stop the iteration, or set .
- (4)
- If k = N, stop the iteration, or set k = k + 1, turn to (2).
3. SA–PSO Method for FKP
3.1. Particle Swarm Optimization
3.2. Improvement by Simulated Annealing Process
3.3. Fitness Function for the FKP Problem of SA–PSO
3.4. SA–PSO Algorithm
Algorithm 1: Simulated Annealing Particle Swarm Optimization (SA–PSO) for FKP. |
Input: Length of outriggers , Accuracy , PSO parameters: (Population size , Dimension , Learning factors , Maximum number of iterations , Weight limit , Position limit , Velocity limit ), Boltzmann constant . |
Output: Predicted posture . |
1: For each particle |
2: Initialize the position the velocity with the permissible range |
3: End for |
4: For each particle i |
5: Calculate the fitness value |
6: Initialize the individual optimum and fitness |
7: End for |
8: Initialize the global optimum ) |
9: Iteration |
10: Do |
11: Calculate the weight by |
12: For each particle i |
13: Calculate velocity |
14: Update particle position |
15: Calculate the fitness |
16: End for |
17: For each particle i |
18: Find the individual best optimum and update the |
19: End for |
20: Update the global optimum of iteration : |
21: ) |
22: Annealing: |
23: |
24: While the or |
25: Output: the predicted posture is |
4. Simulation and Physical Experiments
4.1. Optimiazation of SA–PSO Parameters
4.2. Feasibility Simulation of SAPSO
- (1)
- Given the posture value of the top platform. (To be solved)
- (2)
- Calculate the length vector of the six outriggers corresponding to by IK function. (Input)
- (3)
- Send to the SA–PSO algorithm, find the optimal solution (solving).
4.3. Reliability Simulation
4.3.1. Success Rate Comparison
4.3.2. Continuous Motion Trajectory Simulation
4.3.3. Whole Workspace Randomly Simulation
4.4. Comparison between NR Method and SAPSO
4.5. Physical Verification Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Stewart, D. A Platform with Six Degrees of Freedom. In Proceedings of the Institution of Mechanical Engineers, London, UK, 1 June 1965; Volume 180, pp. 371–386. [Google Scholar]
- Mourrain, B. The 40 “generic” positions of a parallel robot. In Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, 6–8 July 1993; pp. 173–182. [Google Scholar] [CrossRef]
- Dietmaier, P. The Stewart-Gough Platform of General Geometry can have 40 Real Postures. In Advances in Robot Kinematics: Analysis and Control; Springer: Dordrecht, The Netherlands, 1998; pp. 7–16. [Google Scholar] [CrossRef]
- Raghavan, M.; Roth, B. Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators. J. Mech. Des. 1995, 117, 71–79. [Google Scholar] [CrossRef]
- Husty, M. An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech. Mach. Theory 1996, 31, 365–379. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Shim, J.-K. Forward kinematics of the general 6–6 Stewart platform using algebraic elimination. Mech. Mach. Theory 2001, 36, 1073–1085. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Shim, J.-K. Improved dialytic elimination algorithm for the forward kinematics of the general Stewart–Gough platform. Mech. Mach. Theory 2003, 38, 563–577. [Google Scholar] [CrossRef]
- Nag, A.; Safar, V.; Bandyopadhyay, S. A uniform geometric-algebraic framework for the forward kinematic analysis of 6-6 Stewart platform manipulators of various architectures and other related 6-6 spatial manipulators. Mech. Mach. Theory 2020, 155, 104090. [Google Scholar] [CrossRef]
- Kelley, C.T. Solving Nonlinear Equations with Newton’s Method; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
- Yang, C.-F.; Zheng, S.-T.; Jin, J.; Zhu, S.-B.; Han, J.-W. Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method. J. Cent. South Univ. Technol. 2010, 17, 1264–1270. [Google Scholar] [CrossRef]
- Han, K.; Chung, W.; Youm, Y. New Resolution Scheme of the Forward Kinematics of Parallel Manipulators Using Extra Sensors. J. Mech. Des. 1996, 118, 214–219. [Google Scholar] [CrossRef]
- Parenti-Castelli, V.; Di Gregorio, R. A New Algorithm Based on Two Extra-Sensors for Real-Time Computation of the Actual Configuration of the Generalized Stewart-Gough Manipulator. J. Mech. Des. 1999, 122, 294–298. [Google Scholar] [CrossRef]
- Chiu, Y.-J.; Perng, M.-H. Forward Kinematics of a General Fully Parallel Manipulator with Auxiliary Sensors. Int. J. Robot. Res. 2001, 20, 401–414. [Google Scholar] [CrossRef]
- Parikh, P.J.; Lam, S.S. Solving the forward kinematics problem in parallel manipulators using an iterative artificial neural network strategy. Int. J. Adv. Manuf. Technol. 2008, 40, 595–606. [Google Scholar] [CrossRef]
- Yee, C.S.; Lim, K.-B. Forward kinematics solution of Stewart platform using neural networks. Neurocomputing 1997, 16, 333–349. [Google Scholar] [CrossRef]
- Wang, Z.; He, J.; Shang, H.; Gu, H. Forward kinematics analysis of a six-DOF Stewart platform using PCA and NM algorithm. Ind. Robot. Int. J. Robot. Res. Appl. 2009, 36, 448–460. [Google Scholar] [CrossRef] [Green Version]
- Morell, A.; Tarokh, M.; Acosta, L. Solving the forward kinematics problem in parallel robots using Support Vector Regression. Eng. Appl. Artif. Intell. 2013, 26, 1698–1706. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1987; pp. 7–15. [Google Scholar]
- Rutenbar, R. Simulated annealing algorithms: An overview. IEEE Circuits Dev. Mag. 1989, 5, 19–26. [Google Scholar] [CrossRef]
- Shieh, H.-L.; Kuo, C.-C.; Chiang, C.-M. Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl. Math. Comput. 2011, 218, 4365–4383. [Google Scholar] [CrossRef]
Top | Coordinates (cm) | Base | Coordinates (cm) |
---|---|---|---|
[−19.3185, −5.1764, −5]T | [−21.2132, −21.2132, 0]T | ||
[−19.3185, 5.1764, −5]T | [−21.2132, 21.2132, 0]T | ||
[5.1764, 19.3185, −5]T | [−7.7646, 28.9778, 0]T | ||
[14.1421, 14.1421, 5]T | [28.9778, 7.7664, 0]T | ||
[14.1421, −14.1421, −5]T | [28.9778, −7.7664, 0]T | ||
[5.1764, −19.3185, −5]T | [−7.7664, −28.9778, 0]T |
Parameter | Value | Parameter | Value |
---|---|---|---|
Population | 80 | 0.98 | |
0.42 | |||
1.8 | 2.2 | ||
m or rad | m or rad |
Dimension | Dimension | ||
---|---|---|---|
X-trans | 0.0133 | X-rot | −0.1810 |
Y-trans | 0.0660 | Y-rot | 0.3021 |
Z-trans | −0.0122 | Z-rot | −0.0730 |
95.61 | |
107.10 | |
117.54 | |
127.16 | |
135.94 |
Group | PSO | SA–PSO | ||
---|---|---|---|---|
Success Rate | Success Rate | |||
1 | 146.36 | 94.54% | 116.07 | 99.92% |
2 | 140.81 | 100% | 113.51 | 100% |
3 | 144.56 | 95.91% | 113.51 | 99.96% |
4 | 140.53 | 100% | 112.61 | 100% |
5 | 142.83 | 96.23% | 114.88 | 99.97% |
6 | 142.10 | 95.47% | 114.00 | 99.99% |
7 | 144.54 | 98.49% | 115.11 | 99.93% |
8 | 140.55 | 100% | 112.45 | 100% |
9 | 147.17 | 94.28% | 115.00 | 99.96% |
10 | 148.02 | 93.89% | 114.12 | 100% |
Posture | Dimension | Motion Trajectory |
---|---|---|
Items | PSO | SA–PSO |
---|---|---|
Average iterations | 141.00 | 100.82 |
Maximum iterations | 168 | 113 |
Minimum iterations | 122 | 91 |
Standard deviation | 5.98 | 3.10 |
Test | Success Rate (%) | Average Time Consuming (s) | ||
---|---|---|---|---|
NR | SA–PSO | NR | SA–PSO | |
1 | 96.2 | 99.9 | 0.3708 | 0.0372 |
2 | 97.4 | 100 | 0.3468 | 0.0356 |
3 | 97.7 | 99.8 | 0.3725 | 0.0377 |
4 | 97.3 | 100 | 0.4706 | 0.0348 |
5 | 97 | 100 | 0.3638 | 0.0350 |
Top | Coordinate (mm) | Base | Coordinate (mm) |
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Qin, R.; Liu, Y. A New Solving Method Based on Simulated Annealing Particle Swarm Optimization for the Forward Kinematic Problem of the Stewart–Gough Platform. Appl. Sci. 2022, 12, 7657. https://doi.org/10.3390/app12157657
Yin Z, Qin R, Liu Y. A New Solving Method Based on Simulated Annealing Particle Swarm Optimization for the Forward Kinematic Problem of the Stewart–Gough Platform. Applied Sciences. 2022; 12(15):7657. https://doi.org/10.3390/app12157657
Chicago/Turabian StyleYin, Zihao, Rongjie Qin, and Yinnian Liu. 2022. "A New Solving Method Based on Simulated Annealing Particle Swarm Optimization for the Forward Kinematic Problem of the Stewart–Gough Platform" Applied Sciences 12, no. 15: 7657. https://doi.org/10.3390/app12157657
APA StyleYin, Z., Qin, R., & Liu, Y. (2022). A New Solving Method Based on Simulated Annealing Particle Swarm Optimization for the Forward Kinematic Problem of the Stewart–Gough Platform. Applied Sciences, 12(15), 7657. https://doi.org/10.3390/app12157657