Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Collection and Juice Extraction
2.2. Antimicrobial Activity in Agar Well Diffusion
2.3. Organic Extract
2.4. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.5. Bactericidal Activity of the ME after Heating and Compound Removal with Activated Charcoal
2.6. Gas Chromatography–Mass Spectrometry of Organic Extract
2.7. Metabolites Quantification
2.8. Molecular Docking of the Mycobacterium tuberculosis Isocitrate Lyase (MtICL) with 5-HMF, ITAN, and MA
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development marketing and consumer acceptance a review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Willett, W.C. Diet and health: What should we eat? Science 1994, 264, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Res. Int. 2011, 44, 2233–2236. [Google Scholar] [CrossRef]
- Asma, B.; Vicky, L.; Stephanie, D.; Yves, D.; Amy, H.; Sylvie, D. Standardised high dose versus low dose cranberry Proanthocyanidin extracts for the prevention of recurrent urinary tract infection in healthy women [PACCANN]: A double blind randomised controlled trial protocol. BMC Urol. 2018, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Pío-León, J.F.; López-Angulo, G.; Paredes-López, O.; Uribe-Beltran, M.J.; Díaz-Camacho, S.P.; Delgado-Vargas, F. Physicochemical, nutritional and antibacterial characteristics of the fruit of Bromelia pinguin. Plant Foods Hum. Nutr. 2009, 64, 181–187. [Google Scholar] [CrossRef]
- Camacho-Hernández, I.L.; Chávez-Velázquez, J.A.; Uribe-Beltrán, M.J.; Ríos-Morgan, A.; Delgado-Vargas, F. Antifungal activity of fruit pulp extract from Bromelia pinguin. Phytotherapies 2009, 73, 411–413. [Google Scholar] [CrossRef]
- Coelho, R.G.; Honda, N.K.; Vieira, M.; Brum, R.L.; Pavan, F.R.; Leite, C.Q.; Cardoso, C.A. Chemical composition and antioxidant and antimycobacterial activities of Bromelia balansae (Bromeliaceae). J. Med. Food 2010, 13, 1277–1280. [Google Scholar] [CrossRef] [Green Version]
- Abreu-Payrol, J.; González-Mosquera, D.M.; Meneses, A.; Cruz-de-la-Cruz, M.E.; Banze, F.; Miranda-Martínez, M.; Ros-López, O. Determinación de parámetros farmacognósticos y bromatológicos y evaluación de la actividad antiparasitaria de una preparación obtenida del fruto de Bromelia pinguin L. que crece en Cuba. Acta Farm. Bonaer. 2005, 24, 377–382. [Google Scholar]
- Moyano, D.D.; Osorio, M.R.; Murillo, E.P.; Murillo, W.A.; Solanilla, J.D.; Méndez, J.A.; Aristizabal, J.S. Evaluación de parámetros bromatológicos, fitoquímicos y funcionalidad antioxidante de frutos de Bromelia karatas (Bomeliaceae). Vitae 2012, 19, S439–S441. [Google Scholar]
- Villanueva-Alonzo, H.J.; Polanco-Hernández, G.M.; Lizama-Uc, G.; Acosta-Viana, K.Y.; Alvarado-Segura, A.A. Proteolytic activity of wild fruits of Bromelia karatas L. of Yucatán, México. Rev. Chap. Ser. Cienc. For. Ambient. 2019, 25, 157–168. [Google Scholar] [CrossRef]
- Hornung-Leoni, C.T. Avances sobre usos etnobotánicos de las Bromeliaceae en Latinoamérica. B Latinoam Caribe PL 2011, 10, 297–314. [Google Scholar]
- Mondragón-Chaparro, D.M.; Ramírez-Morillo, I.; Flores-Cruz, M.M.; García-Franco, J.G. La familia Bromeliaceae en México. Bot. Sci. 2011, 96, 553–554. [Google Scholar] [CrossRef]
- Montalvo-González, E.; Anaya-Esparza, L.M.; Martínez-Olivo, A.O.; Abreu-Payrol, J.; Sánchez-Burgos, J.A.; García-Magaña, M.L. Physiological and physicochemical behavior of guamara (Bromelia pinguin) and cocuixtle (Bromelia karatas) fruits, as well as the antibacterial effect of their pre-purified proteases. Emir. J. Food Agric. 2021, 33, 277–286. [Google Scholar] [CrossRef]
- Ávalos-Flores, E.; López-Castillo, L.M.; Wielsch, N.; Hupfer, Y.; Winkler, R.; Magaña-Ortiz, D. Protein extract of Bromelia karatas L. rich in cysteine proteases (ananain- and bromelain-like) has antibacterial activity against foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium. Folia Microbiol. 2022, 67, 1–13. [Google Scholar] [CrossRef]
- Kwai, B.X.C.; Collins, A.J.; Middleditch, M.J.; Sperry, J.; Bashiri, G.; Leung, I.K.H. Itaconate is a covalent inhibitor of the Mycobacterium tuberculosis isocitrate lyase. RSC Med. Chem. 2020, 12, 57–61. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, D.; Zhou-Li, B.; Sheng-You, H. HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017, 3, W365–W373. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Sheng-You, H. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Ziadeh, C.; Clark, L.L.; Williams, V.F.; Stahlman, S. Update: Incidence of acute gastrointestinal infections and diarrhea, active component, U.S. Armed Forces, 2010–2019. MSMR 2020, 27, 9–14. [Google Scholar]
- Neuvonen, P.J.; Olkkola, K.T. Oral activated charcoal in the treatment of intoxications. Role of single and repeated doses. Med. Toxicol. Advers. Drug Exp. 1998, 3, 33–58. [Google Scholar] [CrossRef]
- Cecen, F.; Aktas, O. Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 303–304. [Google Scholar]
- El-Ghorab, A.; Shaaban, H.A.; El-Massry, K.F.; Shibamoto, T. Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J. Agric. Food Chem. 2008, 56, 5021–5025. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- McMurdo, M.E.; Argo, I.; Phillips, G.; Daly, F.; Davey, P. Cranberry or trimethoprim for the prevention of recurrent urinary tract infections? A randomized controlled trial in older women. J. Antimicrob. Chemother. 2009, 63, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.; Hao, X.; Shishir, M.; Karim, N.; Chen, W. Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Food Chem. 2021, 337, 127783. [Google Scholar] [CrossRef]
- Nagaraja, A.; Jalageri, M.D.; Puttaiahgowda, Y.M.; Raghava Reddy, K.; Raghu, A.V. A review on various maleic anhydride antimicrobial polymers. J. Microbiol. Methods 2019, 163, 105650. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.; Sanz, M.; Olano, A.; Villamiel, M. Formation of hydroxymethylfurfural and furosine during the storage of jams and fruit-based infant foods. Food Chem. 2004, 85, 605–609. [Google Scholar] [CrossRef]
- Teixidó, E.; Santos, F.J.; Puignou, L.; Galceran, M.T.J. Analysis of 5-hydroxymethylfurfural in foods by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1135, 85–90. [Google Scholar] [CrossRef]
- Rajkumari, J.; Borkotoky, S.; Reddy, D.; Mohanty, S.K.; Kumavath, R.; Murali, A.; Suchiang, K.; Busi, S. Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: Insights from in vitro, in vivo and in silico studies. Microbiol. Res. 2019, 226, 19–26. [Google Scholar] [CrossRef]
- Zaldivar, J.; Martinez, A.; Ingram, L.O. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 1999, 65, 24–33. [Google Scholar] [CrossRef]
- Bai, B.; Xie, J.; Yan, J.F.; Wang, H.H.; Hu, C.H. A High Throughput screening approach to identify Isocitrate Lyase inhibitors from traditional Chinese medicine sources. Drug Dev. Res. 2006, 67, 818–823. [Google Scholar] [CrossRef]
- Wayne, L.G.; Lin, K.Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun. 1982, 37, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- Chew, S.Y.; Yang-Chee, W.J.; Lung-Than, L.T. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: Perspectives from Candida albicans and Saccharomyces cerevisiae. J. Biomed. Sci. 2019, 26, 52. [Google Scholar] [CrossRef]
- Sharma, R.; Das, O.; Damle, S.G.; Sharma, A.K. Isocitrate lyase: A potential target for anti-tubercular drugs. Recent Pat. Inflamm. Allergy Drug Discov. 2013, 7, 114–123. [Google Scholar] [CrossRef]
- Sudha, P.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary Altern. Med. 2011, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Orta, M.L.; Pastor, N.; Austin, C.A.; Mateos, S.; López-Lázaro, M. Alpha, beta-unsaturated lactones 2-furanone and 2-pyrone induce cellular DNA damage, formation of topoisomerase I- and II-DNA complexes and cancer cell death. Toxicol. Lett. 2013, 222, 64–71. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- De La Chapa, J.J.; Singha, P.K.; Lee, D.R.; Gonzales, C.B. Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J. Oral Pathol. Med. 2018, 47, 674–682. [Google Scholar] [CrossRef]
- Kong, F.; Lee, B.H.; Wei, K. 5-Hydroxymethylfurfural Mitigates Lipopolysaccharide-Stimulated Inflammation via Suppression of MAPK, NF-κB and mTOR Activation in RAW 264.7 Cells. Molecules 2019, 24, 275. [Google Scholar] [CrossRef] [Green Version]
- Durling, L.J.; Busk, L.; Hellman, B.E. Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol. 2009, 47, 880–884. [Google Scholar] [CrossRef]
- Svendsen, C.; Husøy, T.; Glatt, H.; Paulsen, J.E.; Alexander, J. 5-Hydroxymethylfurfural and 5-Sulfooxymethylfurfural Increase Adenoma and Flat ACF Number in the Intestine of Min/+ Mice. Anticancer Res. 2009, 29, 1921–1926. [Google Scholar]
- Li, W.; Qu, X.N.; Han, Y.; Zheng, S.W.; Wang, J.; Wang, Y.P. Ameliorative effects of 5-Hydroxymethyl-2-furfural (5-HMF) from Schisandra chinensis on alcoholic liver oxidative injury in mice. Int. J. Mol. Sci. 2015, 16, 2446–2457. [Google Scholar] [CrossRef]
- Kim, D.H.; Han, S.I.; Go, B.; Oh, U.H.; Kim, C.S.; Jung, Y.H.; Lee, J.; Kim, J.H. 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Res. 2019, 39, 6685–6691. [Google Scholar] [CrossRef]
- Jeong, J.B.; Hong, S.C.; Jeong, H.J.; Koo, J.S. Anti-inflammatory effect of 2-Methoxy-4-Vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Arch. Pharm. Res. 2011, 34, 2109–2116. [Google Scholar] [CrossRef]
- Nakano, T.; Ikeda, M.; Wakugawa, T.; Kashiwada, Y.; Kaminuma, O.; Kitamura, N.; Yabumoto, M.; Fujino, H.; Kitamura, Y.; Fukui, H.; et al. Identification of pyrogallol from Awa-tea as an anti-allergic compound that suppresses nasal symptoms and IL-9 gene expression. J. Med. Investig. 2020, 67, 289–297. [Google Scholar] [CrossRef]
Bacteria | ||||
---|---|---|---|---|
E. coli | E. faecalis | S. enteritidis | S. flexneri | |
MIC (mg/mL) | ||||
ME | 10 | 5 | 10 | 10 |
EAF | 10 | 10 | 10 | 10 |
MF | 10 | 10 | 10 | 10 |
ITAN | 0.78 | 0.78 | 0.78 | 0.78 |
MA | 0.78 | 0.78 | 0.78 | 0.78 |
5-HMF | 6.25 | 6.25 | 6.25 | 3.12 |
MBC (mg/mL) | ||||
ME | 20 | 20 | 40 | 40 |
EAF | 20 | 20 | 20 | 20 |
MF | 20 | 20 | 20 | 20 |
ITAN | 1.56 | 1.56 | 1.56 | 1.56 |
MA | 1.56 | 1.56 | 1.56 | 1.56 |
5-HMF | 12.5 | 12.5 | 12.5 | 6.25 |
No. | Compound Name | Area % | No. | Compound Name | Area % |
---|---|---|---|---|---|
1 | Maleic anhydride | 18.98 | 26 | Thymine | 2.33 |
*2 | 2-Methylpentyl formate | 0.22 | 27 | 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl | 2.05 |
*3 | 1 H-Imidazole, 4,5 dihydro-2-methyl | 0.28 | *28 | 2-Cyclopenten-1-one,5-hydroxy-2,3-dimethyl | 0.29 |
*4 | Trans-2-Pentenoic acid | 0.30 | *29 | Bicyclo [3.1.0] hexan -2-ol | 0.20 |
*5 | 1 H-Tetrazole 1-methyl | 0.20 | *30 | Isobutyl nonyl carbonate | 0.33 |
*6 | N-(n-Butoxymethyl) acrylamide | 0.26 | *31 | 2-Vinyl-9-[3-deoxy-beta-d-ribofuranosyl] hypoxanthine | 0.35 |
*7 | 2-Heptanol, 5-ethyl | 0.26 | 32 | 5-Hydroxymethylfurfural | 18.09 |
8 | Itaconic anhydride | 22.47 | *33 | Thymol | 0.47 |
9 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | 1.42 | *34 | 4-Hydroxy-3-methylacetophenone | 0.46 |
*10 | 2H-Pyran, 3,4-dihydro | 0.67 | *35 | 2-Methoxy-4-vinylphenol | 0.81 |
*11 | cis-1,4-Dimethylcyclohexane | 0.56 | *36 | 3-Methoxyacetophenone | 0.73 |
12 | 2 (3H)-Furanone | 0.71 | *37 | 3,4-Diethylphenol | 0.33 |
13 | 2,5-Furandione, 3,4-dimethyl | 0.22 | *38 | Ethyl propionylacetate | 1.22 |
*14 | Pent-2-ynal | 0.29 | *39 | Methyl 3-hydroxypentanoate | 1.12 |
*15 | 1,2-Butadiene | 0.64 | *40 | 3-Methoxy-hexane-1,6-diol | 0.77 |
16 | Hexan-3-yl acetate | 1.41 | *41 | Heptyl butyrate | 2.14 |
*17 | Pentanoic acid, 4-oxo | 1.45 | *42 | Triethylene glycol monododecyl ether | 1.21 |
*18 | 1,5-Diacetoxypentane | 1.23 | *43 | Malic Acid | 1.49 |
*19 | 2-Propanamine, N-methyl-N-nitroso | 1.72 | *44 | 2-Ethyl-3-hydroxyhexyl 2-methylpropanoate | 1.37 |
*20 | Methyl furan-3-carboxylate | 1.08 | *45 | 2,3,5,6-Tetrafluoroanisole | 0.60 |
21 | Furyl hydroxymethyl ketone | 1.26 | *46 | Ethanone, 1-(2,5-dimethoxyphenyl) | 0.60 |
22 | Methyl 2-furoate | 1.69 | *47 | 1,2,4-Cyclopentanetrione, 3-(2-pentenyl) | 0.40 |
23 | Cyclopentene | 1.11 | *48 | m-Ethyl aminophenol | 0.25 |
*24 | 2-Cyclopentene-1-one, 2-methyl | 0.77 | *49 | 2,4,6 (3H)-Pteridinetrione, 1,5-dihydro | 0.39 |
*25 | 3H-Pyrazol-3-one, 2,4 –dihydro-2,4,5-trimethyl | 2.55 |
Compound | Biological Activity | Reference |
---|---|---|
2-Heptanol, 5-ethyl | Possible alpha-amylase inhibitor. | [36] |
2 (3H)-Furanone | It induces DNA damage and is possibly an anticancer. | [37] |
Thymol | Bactericidal, fungicidal, anticarcinoma. | [38,39] |
5-HMF | Inhibition of alcoholic hepatic oxidative injury, some toxicological effects, anti-inflammatory, and anti-allergic effects. | [40,41,42,43] |
2-Methoxy-4-vinylphenol | Anti-inflammatory and possible anticancer. | [44,45] |
1,2,3-Benzenetriol | anti-allergic | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayil-Gutiérrez, B.A.; Amaya-Guardia, K.C.; Alvarado-Segura, A.A.; Polanco-Hernández, G.; Uc-Chuc, M.A.; Acosta-Viana, K.Y.; Guzmán-Marín, E.; Samaniego-Gámez, B.Y.; Poot-Poot, W.A.; Lizama-Uc, G.; et al. Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract. Appl. Sci. 2022, 12, 7275. https://doi.org/10.3390/app12147275
Ayil-Gutiérrez BA, Amaya-Guardia KC, Alvarado-Segura AA, Polanco-Hernández G, Uc-Chuc MA, Acosta-Viana KY, Guzmán-Marín E, Samaniego-Gámez BY, Poot-Poot WA, Lizama-Uc G, et al. Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract. Applied Sciences. 2022; 12(14):7275. https://doi.org/10.3390/app12147275
Chicago/Turabian StyleAyil-Gutiérrez, Benjamín A., Karla Cecilia Amaya-Guardia, Arturo A. Alvarado-Segura, Glendy Polanco-Hernández, Miguel Angel Uc-Chuc, Karla Y. Acosta-Viana, Eugenia Guzmán-Marín, Blancka Yesenia Samaniego-Gámez, Wilberth Alfredo Poot-Poot, Gabriel Lizama-Uc, and et al. 2022. "Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract" Applied Sciences 12, no. 14: 7275. https://doi.org/10.3390/app12147275
APA StyleAyil-Gutiérrez, B. A., Amaya-Guardia, K. C., Alvarado-Segura, A. A., Polanco-Hernández, G., Uc-Chuc, M. A., Acosta-Viana, K. Y., Guzmán-Marín, E., Samaniego-Gámez, B. Y., Poot-Poot, W. A., Lizama-Uc, G., & Villanueva-Alonzo, H. d. J. (2022). Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract. Applied Sciences, 12(14), 7275. https://doi.org/10.3390/app12147275